Allen, N., Hines, PC., & Young, VW. (2011). Performances of Human Listeners and an Automatic Aural Classifier in Discriminating between Sonar Target Echoes and Clutter.
The Journal of the Acoustical Society of America,
130(3), 1287-1298.
https://doi.org/10.1121/1.3614549
Chakrabarty, S., & Habets, EA. (2017). Broadband DOA Estimation Using Convolutional Neural Networks Trained with Noise Signals.
Paper Presented at the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).
https://doi.org/10.1109/WASPAA.2017.8170010
Chi, J., Li, X., Wang, H., Gao, D., & Gerstoft, P. (2019). Sound Source Ranging Using a Feed-forward Neural Network with Fitting-based Early Stopping.
The Journal of the Acoustical Society of America,
146(3), EL258-EL264 https://doi.org/10.1121/1.5126115.
Choi, J., Choo, Y., & Lee, K. (2019). Acoustic Classification of Surface and Underwater Vessels in the Ocean Using Supervised Machine Learning.
Sensors,
19(16), 3492.
https://doi.org/10.3390/s19163492
Conan, E., Bonnel, J., Chonavel, T., & Nicolas, B. (2016). Source Depth Discrimination with a Vertical Line Array.
The Journal of the Acoustical Society of America.
140(5), EL434-EL440.
https://doi.org/10.1121/1.4967506
Conan, E., Bonnel, J., Nicolas, B., & Chonavel, T. (2017). Using the Trapped Energy Ratio for Source Depth Discrimination with a Horizontal Line Array: Theory and Experimental Results.
The Journal of the Acoustical Society of America,
142(5), 2776-2786.
https://doi.org/10.1121/1.5009449
Das, A., & Sejnowski, TJ. (2017). Narrowband and Wideband Off-grid Direction-of-arrival Estimation via Sparse Bayesian Learning.
IEEE Journal of Oceanic Engineering,
43(1), 108-118.
https://doi.org/10.1109/JOE.2017.2660278
Edelmann, GF., & Gaumond, CF. (2011). Beamforming Using Compressive Sensing.
The Journal of the Acoustical Society of America,
130(4), EL232-EL237.
https://doi.org/10.1121/1.3632046
Gemba, KL., Nannuru, S., & Gerstoft, P. (2019). Robust Ocean Acoustic Localization with Sparse Bayesian Learning.
IEEE Journal of Selected Topics in Signal Processing,
13(1), 49-60.
https://doi.org/10.1109/JSTSP.2019.2900912
Gerstoft, P., Mecklenbräuker, CF., Xenaki, A., & Nannuru, S. (2016). Multisnapshot Sparse Bayesian Learning for DOA.
IEEE Signal Processing Letters,
23(10), 1469-1473.
https://doi.org/10.1109/LSP.2016.2598550
Hemminger, TL., & Pao, Y-H. (1994). Detection and Classification of Underwater Acoustic Transients Using Neural Networks.
IEEE Transactions on Neural Networks,
5(5), 712-718.
https://doi.org/10.1109/72.317723
Huang, Z., Xu, J., Gong, Z., Wang, H., & Yan, Y. (2018). Source Localization Using Deep Neural Networks in a Shallow Water Environment.
The Journal of the Acoustical Society of America,
143(5), 2922-2932.
https://doi.org/10.1121/1.5036725
Jensen, FB., Kuperman, WA., Porter, MB., & Schmidt, H. (2011). Computational Ocean Acoustics. Springer Science & Business Media.
Ke, X., Yuan, F., & Cheng, E. (2018). Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm.
Sensors,
18(12), 4318.
https://doi.org/10.3390/s18124318
Komari Alaie, H., & Farsi, H. (2018). Passive Sonar Target Detection Using Statistical Classifier and Adaptive Threshold.
Applied Sciences,
8(1), 61.
https://doi.org/10.3390/app8010061
Liang, G., Zhang, Y., Zhang, G., Feng, J., & Zheng, C. (2018). Depth Discrimination for Low-Frequency Sources Using a Horizontal Line Array of Acoustic Vector Sensors Based on Mode Extraction.
Sensors,
18(11), 3692.
https://doi.org/10.3390/s18113692
Murphy, SM., & Hines, PC. (2014). Examining the Robustness of Automated Aural Classification of Active Sonar Echoes.
The Journal of the Acoustical Society of America,
135(2), 626-636.
https://doi.org/10.1121/1.4861922
Nannuru, S., Gemba, KL., Gerstoft, P., Hodgkiss, WS., & Mecklenbräuker, CF. (2019). Sparse Bayesian Learning with Multiple Dictionaries.
Signal Processing,
159, 159-170.
https://doi.org/10.1016/j.sigpro.2019.02.003
Nielsen, RO. (1991). Sonar Signal Processing. Artech House.
Niu, H., Gong, Z., Ozanich, E., Gerstoft, P., Wang, H., & Li, Z. (2019). Deep-learning Source Localization Using Multi-Frequency Magnitude-only Data.
The Journal of the Acoustical Society of America,
146(1), 211-222.
https://doi.org/10.1121/1.5116016
Niu, H., Ozanich, E., & Gerstoft, P. (2017a). Ship Localization in Santa Barbara Channel Using Machine Learning Classifiers.
The Journal of the Acoustical Society of America,
142(5), EL455-EL460.
https://doi.org/10.1121/1.5010064
Niu, H., Reeves, E., & Gerstoft, P. (2017b). Source Localization in an Ocean Waveguide Using Supervised Machine Learning.
The Journal of the Acoustical Society of America,
142(3), 1176-1188.
https://doi.org/10.1121/1.5000165
Ozard, JM., Zakarauskas, P., & Ko, P. (1991). An Artificial Neural Network for Range and Depth Discrimination in Matched Field Processing.
The Journal of the Acoustical Society of America,
90(5), 2658-2663.
https://doi.org/10.1121/1.401860
Park, Y., Seong, W., & Choo, Y. (2017). Compressive Time Delay Estimation off the Grid.
The Journal of the Acoustical Society of America.
141(6), EL585-EL591.
https://doi.org/10.1121/1.4985612
Shin, FB., & Kil, DH. (1996). Full-spectrum Signal Processing Using a Classify-before-detect Paradigm.
The Journal of the Acoustical Society of America,
99(4), 2188-2197.
https://doi.org/10.1121/1.415407
Tipping, ME. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1, Jun. 211-244.
Tucker, S., & Brown, GJ. (2005). Classification of Transient Sonar Sounds Using Perceptually Motivated Features.
IEEE Journal of Oceanic Engineering,
30(3), 588-600.
https://doi.org/10.1109/JOE.2005.850910
Wang, W., Ni, H., Su, L., Hu, T., Ren, Q., Gerstoft, P., & Ma, L. (2019a). Deep Transfer Learning for Source Ranging: Deep-sea Experiment Results.
The Journal of the Acoustical Society of America,
146(4), EL317-EL322.
https://doi.org/10.1121/1.5126923
Wang, X., Liu, A., Zhang, Y., & Xue, F. (2019b). Underwater Acoustic Target Recognition: A Combination of Multi-Dimensional Fusion Features and Modified Deep Neural Network.
Remote Sensing,
11(16), 1888.
https://doi.org/10.3390/rs11161888
Wang, Y., & Peng, H. (2018). Underwater Acoustic Source Localization Using Generalized Regression Neural Network.
The Journal of the Acoustical Society of America,
143(4), 2321-2331.
https://doi.org/10.1121/1.5032311
Xenaki, A., & Gerstoft, P. (2015). Grid-free Compressive Beamforming.
The Journal of the Acoustical Society of America,
137(4), 1923-1935.
https://doi.org/10.1121/1.4916269
Xenaki, A., Gerstoft, P., & Mosegaard, K. (2014). Compressive Beamforming.
The Journal of the Acoustical Society of America,
136(1), 260-271.
https://doi.org/10.1121/1.4883360
Yang, H., Lee, K., Choo, Y., & Kim, K. (2020). Underwater Acoustic Research Trends with Machine Learning: General Background.
Journal of Ocean Engineering and Technology,
34(2), 147-154.
https://doi.org/10.26748/2020.015
Yang, H., Shen, S., Yao, X., Sheng, M., & Wang, C. (2018). Competitive Deep-belief Networks for Underwater Acoustic Target recognition.
Sensors,
18(4), 952.
https://doi.org/10.3390/s18040952
Yang, L., & Chen, K. (2015). Performance and Strategy Comparisons of Human Listeners and Logistic Regression in Discriminating Underwater Targets.
The Journal of the Acoustical Society of America,
138(5), 3138-3147.
https://doi.org/10.1121/1.4935390
Young, VW., & Hines, PC. (2007). Perception-based Automatic Classification of Impulsive-source Active Sonar Echoes.
The Journal of the Acoustical Society of America,
122(3), 1502-1517.
https://doi.org/10.1121/1.2767001
Zhang, Z., & Rao, BD. (2011). Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning.
IEEE Journal of Selected Topics in Signal Processing,
5(5), 912-926.
https://doi.org/10.1109/JSTSP.2011.2159773
Zhang, Z., & Rao, BD. (2013). Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-block Correlation.
IEEE Transactions on Signal Processing,
61(8), 2009-2015.
https://doi.org/10.1109/TSP.2013.2241055
Zion, B., Beran, M., Chin, S., & Howard, JJ. (1991). A Neural Network Approach to Source Localization.
The Journal of the Acoustical Society of America,
90(4), 2081-2090.
https://doi.org/10.1121/1.401635