Abraham, DA., 2019. Underwater Acoustic Signal Processing: Modeling, Detection, and Estimation. Springer.
Abraham, DA., Willett, PK., 2002. Active Sonar Detection in Shallow Water Using the Page Test. IEEE Journal of Oceanic Engineering. 27(1):35-46
https://doi.org/10.1109/48.989883.
Allen, N., Hines, PC., Young, VW., 2011. Performances of Human Listeners and an Automatic Aural Classifier in Discriminating between Sonar Target Echoes and Clutter. The Journal of the Acoustical Society of America. 130(3):1287-1298
https://doi.org/10.1121/1.3614549.
Azimi-Sadjadi, MR., Yao, D., Huang, Q., Dobeck, GJ., 2000. Underwater Target Classification Using Wavelet Packets and Neural Networks. IEEE Transactions on Neural Networks. 11(3):784-794
https://doi.org/10.1109/72.846748.
Azimi-Sadjadi, MR., Yao, D., Jamshidi, AA., Dobeck, GJ., 2002. Underwater Target Classification in Changing Environments Using an Adaptive Feature Mapping. IEEE Transactions on Neural Networks. 13(5):1099-1111
https://doi.org/10.1109/TNN.2002.1031942.
Fischell, EM., Schmidt, H., 2015. Classification of Underwater Targets from Autonomous Underwater Vehicle Sampled Bistatic Acoustic Scattered Fields. The Journal of the Acoustical Society of America. 138(6):3773-3784
https://doi.org/10.1121/1.4938017.
Fischell, EM., Schmidt, H., 2017a. Environmental Effects on Seabed Object Bistatic Scattering Classification. The Journal of the Acoustical Society of America. 141(1):28-37
https://doi.org/10.1121/1.4972273.
Fischell, EM., Schmidt, H., 2017b. Supervised Machine Learning for Estimation of Target Aspect Angle from Bistatic Acoustic Scattering. IEEE Journal of Oceanic Engineering. 42(4):759-769
https://doi.org/10.1109/JOE.2017.2650759.
Gelb, JM., Heath, RE., Tipple, GL., 2010. Statistics of Distinct Clutter Classes in Midfrequency Active Sonar. IEEE Journal of Oceanic Engineering. 35(2):220-229
https://doi.org/10.1109/JOE.2009.2031547.
Gorman, RP., Sejnowski, TJ., 1988b. Learned Classification of Sonar Targets Using a Massively Parallel Network. IEEE Transactions on Acoustics, Speech, and Signal Processing. 36(7):1135-1140
https://doi.org/10.1109/29.1640.
Isaacs, JC., 2015. Sonar Automatic Target Recognition for Underwater UXO Remediation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 134-140.
Li, D., Azimi-Sadjadi, MR., Robinson, M., 2004. Comparison of Different Classification Algorithms for Underwater Target Discrimination. IEEE Transactions on Neural Networks. 15(1):189-194
https://doi.org/10.1109/TNN.2003.820621.
Murphy, SM., Hines, PC., 2014. Examining the Robustness of Automated Aural Classification of Active Sonar Echoes. The Journal of the Acoustical Society of America. 135(2):626-636
https://doi.org/10.1121/1.4861922.
Myers, V., Fawcett, J., 2010. A Template Matching Procedure for Automatic Target Recognition in Synthetic Aperture Sonar Imager. IEEE Signal Processing Letters. 17(7):683-686
https://doi.org/10.1109/LSP.2010.2051574.
Runkle, P., Bharadwaj, P., Couchman, L., Carin, L., 1999a. Hidden Markov Models for Multi-aspect Target Identification. IEEE Transactions on Signal Processing. 47(7):2035-2040
https://doi.org/10.1109/78.771050.
Runkle, P., Carin, L., Couchman, L., Bucaro, JA., Yoder, TJ., 1999b. Multiaspect Identification of Submerged Elastic Targets via Wave-based Matching Pursuits and Hidden Markov Models. The Journal of the Acoustical Society of America. 106, 605-616
https://doi.org/10.1121/1.427029.
Shin, FB., Kil, DH., Wayland, RF., 1997. Active Impulsive Echo Discrimination in Shallow Water by Mapping Target Physics-derived Features to Classifiers. IEEE Journal of Oceanic Engineering. 22(1):66-80
https://doi.org/10.1109/48.557541.
Trucco, A., 2001. Detection of Objects Buried in the Seafloor by a Pattern Recognition Approach. IEEE Journal of Oceanic Engineering. 26(4):769-782
https://doi.org/10.1109/48.972118.
Yang, H., Lee, K., Choo, Y., Kim, K., 2020a. Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology. 34(2):147-154
https://doi.org/10.26748/KSOE.2020.015.
Yang, H., Lee, K., Choo, Y., Kim, K., 2020b. Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications. Journal of Ocean Engineering and Technology. 34(3):227-236
https://doi.org/10.26748/KSOE.2020.017.
Yao, D., Azimi-Sadjadi, MR., Jamshidi, AA., Dobeck, GJ., 2002. A Study of Effects of Sonar Bandwidth for Underwater Target Classification. IEEE Journal of Oceanic Engineering. 27(3):619-627
https://doi.org/10.1109/JOE.2002.1040944.
Young, VW., Hines, PC., 2007. Perception-based Automatic Classification of Impulsive-source Active Sonar Echoes. The Journal of the Acoustical Society of America. 122(3):1502-1517
https://doi.org/10.1121/1.2767001.