Baggeroer, AB., Kuperman, WA., Mikhalevsky, PN., 1993. An Overview of Matched Field Methods in Ocean Acoustics. IEEE Journal of Oceanic Engineering. 18(4):401-424
https://doi.org/10.1109/48.262292
.
Bianco, M., Gerstoft, P., 2016. Compressive Acoustic Sound Speed Profile Estimation. The Journal of the Acoustical Society of America. 139(3):p EL90-EL94.
Bianco, M., Gerstoft, P., 2017. Dictionary Learning of Sound Speed Profiles. The Journal of the Acoustical Society of America. 141(3):1749-1758.
Bucker, HP., 1976. Use of Calculated Sound Fields and Matched Field Detection to Locate Sound Sources in Shallow Water. The Journal of the Acoustical Society of America. 59(2):368-373.
Buscombe, D., Grams, PE., 2018. Probabilistic Substrate Classification with Multispectral Acoustic Backscatter: A Comparison of Discriminative and Generative Models. Geoscience. 8(11):395
https://doi.org/10.3390/geosciences8110395
.
Candes, EJ., Wakin, MB., 2008. An Introduction to Compressive Sampling. IEEE Signal Processing Magazine. 25(2):21-30.
Caiti, A., Jesus, SM., 1996. Acoustic Estimation of Seafloor Parameters: A Radial Basis Functions Approach. The Journal of the Acoustical Society of America. 100(3):1473-1481.
Choo, Y., Seong, Y., 2018. Compressive Sound Speed Profile Inversion Using Eamforming Results. Remote Sensing. 10, 704.
Clay, CS., 1966. Use of Arrays for Acoustic Transmission in a Noisy Ocean. Review of Geophysics. 4(4):475-507.
Clay, CS., 1987. Optimum Time Domain Signal Transmission and Source Location in a Waveguide. The Journal of the Acoustical Society of America. 81(3):660-664.
Clay, CS., Li, S., 1988. Time Domain Signal Transmission and Source Location in a Waveguide: Matched Filter and Deconvolution Experiments. The Journal of the Acoustical Society of America. 83(4):1377-1417.
Collins, MD., Kuperman, WA., 1991. Focalization: Environmental Focusing and Source Localization. The Journal of the Acoustical Society of America. 90(3):1410-1422.
Collins, MD., Kuperman, WA., Schmidt, H., 1992. Nonlinear Inversion for Ocean-bottom Properties. The Journal of the Acoustical Society of America. 92, 2770-2783.
Diesing, M., Green, SL., Stephens, D., Lark, RM., Stewart, HA., Dove, D., 2014. Mapping Seabed Sediment: Comparison of Manual, Geostatistical, Object-based Image Analysis and Machine Learning Approaches. Continental Shelf Research. 84, 107-119
https://doi.org/10.1016/j.csr.2014.05.004..
Dosso, SE., Yeremy, ML., Ozard, JM., Chapman, NR., 1993. Estimation of Ocean Bottom Properties by Matched-field Inversion of Acoustic Field Data. IEEE Journal of Oceanic Engineering. 18, 232-239.
Gerstoft, P., 1994. Inversion of Seismoacoustic Data Using Genetic Algorithms and a Posteriori Probability Distribution. The Journal of the Acoustical Society of America. 95, 770-782.
Gerstoft, P., Mecklenbräuker, CF., Seong, W., Bianco, M., 2018. Introduction to Compressive Sensing in Acoustics. The Journal of the Acoustical Society of America. 143(6):3731-3736
https://doi.org/10.1121/1.5043089
.
Lindsay, CE., Chapman, NR., 1993. Matched Field Inversion for Geoacoustic Model Parameters Using Adaptive Simulated Annealing. IEEE Journal of Oceanic Engineering. 18(3):224-231
https://doi.org/10.1109/JOE.1993.236360
.
Lynch, JF., Rajan, SD., Frisk, GV., 1991. A Comparison of Broadband and Narrow-band Modal Inversions for Bottom Properties at a Site Near Corpus Christi, Texas. The Journal of the Acoustical Society of America. 89(2):648-665
https://doi.org/10.1121/1.400676
.
Martin, KM., Wood, WT., Becker, JJ., 2015. A Global Prediction of Seafloor Sediment Porosity Using Machine Learning. Geophysical Research Letters. 42(24):10640-10646
https://doi.org/10.1002/2015GL065279
.
Michalopoulou, ZH., Alexandrou, D., de Moustier, C., 1995. Application of Neural and Statistical Classifiers to the Problem of Seafloor Characterization. IEEE Journal of Oceanic Engineering. 20(3):190-197
https://doi.org/10.1109/48.393074
.
Park, JC., Kennedy, RM., 1996. Remote Sensing of Ocean Sound Speed Profiles by a Perceptron Neural Network. IEEE Journal of Oceanic Engineering. 21(2):216-224
https://doi.org/10.1109/48.486796
.
Rajan, SD., Lynch, JF., Frisk, GV., 1987. Perturbative Inversion Methods for Obtaining Bottom Parameters in Shallow Water. The Journal of the Acoustical Society of America. 82(3):998-1017
https://doi.org/10.1121/1.395300
.
Shang, EC., 1989. Ocean Acoustic Tomography Based on Adiabatic Mode Theory. The Journal of the Acoustical Society of America. 85(4):1531-1537
https://doi.org/10.1121/1.397355
.
Stephens, D., Diesing, M., 2014. A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-size Data. Plos One. 9(4):e93950.
Tartakovsky, DM., Guadagnini, A., Wohlberg, BE., 2008. Machine learning methods for inverse modeling. Geostatistics for Environmental Applications. p 117-125 Springer Science Business Media.
Tolstoy, A., 1992. Linearization of the Matched Field Processing Approach to Acoustic Tomography. The Journal of the Acoustical Society of America. 91(2):781-787
https://doi.org/10.1121/1.402538
.
Tolstoy, A., 1993. Matched Field Processing for Underwater Acoustics . Singapore: World Scientific.
Tolstoy, A., Chapman, NR., Brooke, G., 1998. Workshop ’97: Benchmarking for Geoacoustic Inversion in Shallow Water. Journal of Computational Acoustics. 6(1&2):1-28
https://doi.org/10.1142/S0218396X9800003X
.
Tolstoy, A., Diachok, O., Frazer, LN., 1991. Acoustic Tomography via Matched Field Processing. The Journal of the Acoustical Society of America. 89(3):1119-1127
https://doi.org/10.1121/1.400647
.
Yang, H., Lee, K., Choo, Y., Kim, K., 2020a. Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology. 34(2):147-154
https://doi.org/10.26748/KSOE.2020.015
.
Yang, H., Lee, K., Choo, Y., Kim, K., 2020b. Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications. Journal of Ocean Engineering and Technology. 34(3):227-236
https://doi.org/10.26748/KSOE.2020.017
.
Yang, H., Byun, S.-H., Lee, K., Choo, Y., Kim, K., 2020c. Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications. Journal of Ocean Engineering and Technology. In Press.
https://doi.org/10.26748/KSOE.2020.018
.
Yardim, C., Gerstoft, P., Hodgkiss, WS., Traer, J., 2014. Compressive Geoacoustic Inversion Using Ambient Noise. The Journal of the Acoustical Society of America. 135(3):1245-1255
https://doi.org/10.1121/1.4864792
.