ABAQUS. (2013). Standard User’s Manual – Version 6.13 Dassault Systemes Simulia Corp.
American Institute of Steel Construction (AISC). (2005). Specification for Structural Steel Buildings, AISC, 360-05.
American Petroleum Institute (API),. (2007). Recommended Practice for Planning, Design and Constructing Fixed Offshore Platforms Working Stress Design. API Publishing Services.
ANSYS. (2010). ANSYS User’s Manual - Version 12.1.
Bossanyi, EA. (2010). GH-Bladed Version 4.0 User Manual. Garrad Hassan and Partners Limited Document, 2..
Box, J., & Wilson, W. (1951). Central Composites Design. Journal of the Royal Statistical Society, 1, 1-35.
Bucher, CG., & Bourgund, U. (1987). Efficient use of Response Surface Methods. Universität Innsbruck, Institut für Mechanik.
Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001).
An Introduction to Statistical Modeling of Extreme Values. Springer: London.
doi.org/10.1007/978-1-4471-3675-0
Det Norske Veritas (DNV). (2011). Fatigue Design of Offshore Steel Structures. RP-C203..
Det Norske Veritas (DNV). (2013). Design of offshore wind turbine structures. DNV-OS-J101..
Dong, W., Moan, T., & Gao, Z. (2011). Long-Term Fatigue Analysis of Multi-Planner Tubular Joints for Jacket-Type Offshore Wind Turbine in Time Domain.
Engineering Structures,
33(6), 2002-2014.
https://doi.org/10.1016/j.engstruct.2011.02.037
Dong, W., Moan, T., & Gao, Z. (2012). Fatigue Reliability Analysis of the Jacket Support Structure for Offshore Wind Turbine considering the Effect of Corrosion and Inspection.
Reliability Engineering and System Safety,
106, 11-27.
https://doi.org/10.1016/j.ress.2012.06.011
Fisher, RA., & Tippett, LHC. (1928). Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample.
Mathematical Proceedings of the Cambridge Philosophical Society,
24(2), 180-190.
https://doi.org/10.1017/S0305004100015681
Goodman, J. (1899). Mechanics Applied to Engineering. Longman, Green and Company: London.
Haldar, A., & Mahadevan, S. (2000). Reliability Assessment using Stochastic Finite Element. John Wiley: New York.
International Electro-Technical Commission (EIC). (2005). Wind Turbines-Part 1: Design Requirements, IEC, Geneva.
International Electro-Technical Commission (EIC). (2009). Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines, IEC, Geneva.
Jenkinson, AF. (1955). The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements.
Quarterly Journal of the Royal Meteorological Society,
81(348), 158-171.
https://doi.org/10.1002/qj.49708134804
Jeong, ST., Kim, JD., Ko, DH., & Yoon, GL. (2008). Parameter Estimation and Analysis of Extreme Highest Tide Level in Marginal Seas Around Korea. Journal of Korean Society of Coastal and Ocean Engineers, 20(5), 482-490.
Johannessen, K., Meling, TS., & Hayer, S. (2001). Joint Distribution for Wind and Waves in the Northern North Sea. In the Eleventh International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers Stavanger Norway.
Kelma, S., & Schaumann, P. (2015). Probabilistic Fatigue Analysis of Jacket Support Structures for Offshore Wind Turbines Exemplified on Tubular Joints.
Energy Procedia,
80, 151-158.
https://doi.org/10.1016/j.egypro.2015.11.417
Kuang, JG., Potvin, AB., & Leick, RD. (1975). Stress Concentration in Tubular Joints. Proceedings of Offshore Technology Conference.
Le Méhauté, B. (2013). An Introduction to Hydrodynamics and Water Waves. Springer Science & Business Media: Berlin.
Lee, SG. (2016). Reliability Analysis of Offshore Wind Turbine Support Structure Considering Dynamic Response Characteristics. Ph. D., Kunsan National University, Thesis Korea.
Manwell, JF., McGowan, JG., & Rogers, AL. (2002). Wind Energy Explained: Theory, Design and Application. John Wiley & Sons.
Matsuishi, M., & Endo, T. (1968). Fatigue of Metals Subjected to Varying Stress. Japan Society of Mechanical Engineers, Fukuoka, Japan, 68(2), 37-40.
McVicar, TR., Roderick, ML., Donohue, RJ., Li, LT., Van Niel, TG., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, NM., Mescherskaya, AV., Kruger, AC., Rehman, S., & Dinpashoh, Y. (2012). Global Review and Synthesis of Trends in Observed Terrestrial Near-Surface Wind Speeds: Implications for Evaporation.
Journal of Hydrology, 416-417 182-205.
https://doi.org/10.1016/j.jhydrol.2011.10.024
Miner, MA. (1945). Cumulative Fatigue Damage. Journal of Applied Mechanics, 12(3), A159-A164.
Ministry of Oceans and Fisheries (MOF). (2005). Estimation Report of Deep-sea Design Wave in the Whole Sea Area (II), Korea Institute of Ocean Science & Technology (KIOST).
Morison, JR., Johnson, JW., & Schaaf, SA. (1950). The Force Exerted by Surface Waves on Piles.
Journal of Petroleum Technology,
2(05), 149-154.
https://doi.org/10.2118/950149-G
Raymond, HM., & Douglas, CM. (2002). Response Surface Methodology: Process and Product Optimization using Designed Experiments. John Wiley & Sons: New York.
Schuëller, GI., Bucher, CG., Bourgund, U., & Ouypornprasert, W. (1989). On Efficient Computational Schemes to Calculate Structural Failure Probabilities.
Probabilistic Engineering Mechanics,
4(1), 10-18.
https://doi.org/10.1016/0266-8920(89)90003-9
Thomas, BR., Kent, EC., Swail, VR., & Berry, DI. (2008). Trends in Ship Wind Speeds Adjusted for Observation Method and Height.
International Journal of Climatology: A Journal of the Royal Meteorological Society,
28(6), 747-763.
https://doi.org/10.1002/joc.1570
Ucar, A., & Balo, F. (2010). Assessment of Wind Power Potential for Turbine Installation in Coastal Areas of Turkey.
Renewable and Sustainable Energy Reviews,
14(7), 1901-1912.
https://doi.org/10.1016/j.rser.2010.03.021
Yeter, B., Garbatov, Y., & Soares, C.G.. (2014). Fatigue Reliability Assessment of an Offshore Supporting Structure Maritime Technology and Engineering,. CRC Press: p 689-700.
Young, IR., Vinoth, J., Zieger, S., & Babanin, AV. (2012). Investigation of Trends in Extreme Value Wave Height and Wind Speed.
Journal of Geophysical Research: Oceans.
117(C11),
https://doi.org/10.1029/2011JC007753