Cao, F., Han, M., Shi, H., Li, M., & Liu, Z. (2022). Comparative study on metaheuristic algorithms for optimising wave energy converters.
Ocean Engineering,
247, 110461.
https://doi.org/10.1016/j.oceaneng.2021.110461
Chen, K., Zhou, F., Yin, L., Wang, S., Wang, Y., & Wan, F. (2018). A hybrid particle swarm optimizer with sine cosine acceleration coefficients.
Information Sciences,
422, 218-241.
https://doi.org/10.1016/j.ins.2017.09.015
Eberhart, R., & Kennedy, J. (1995) October. A new optimizer using particle swarm theory.
MHS’95 Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan. p 39-43 IEEE:
https://doi.org/10.1109/MHS.1995.494215
Gandomi, M., Pirooz, M. D., Nematollahi, B., Nikoo, M. R., Varjavand, I., Etri, T., & Gandomi, A. H. (2023). Multi-criteria decision-making optimization model for permeable breakwaters characterization.
Ocean Engineering,
280, 114447.
https://doi.org/10.1016/j.oceaneng.2023.114447
Huang, C. J., Chang, H. H., & Hwung, H. H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater.
Coastal engineering,
49(1–2), 1-24.
https://doi.org/10.1016/S0378-3839(03)00034-6
Jeong, H. J., & Koo, W. (2023). Analysis of various algorithms for optimizing the wave energy converters associated with a sloped wall-type breakwater.
Ocean Engineering,
276, 114199.
https://doi.org/10.1016/j.oceaneng.2023.114199
Jeong, J. H., Kim, J. H., & Lee, J. L. (2021). Analysis of wave transmission characteristics on the TTP submerged breakwater using a parabolic-type linear wave deformation model.
Journal of Ocean Engineering and Technology,
35(1), 82-90.
https://doi.org/10.26748/KSOE.2020.066
Jiang, L., Zhang, J., Tong, L., Guo, Y., He, R., & Sun, K. (2022). Wave motion and seabed response around a vertical structure sheltered by submerged breakwaters with Fabry–Pérot resonance.
Journal of Marine Science and Engineering,
10(11), 1797.
https://doi.org/10.3390/jmse10111797
Kaveh, M., & Mesgari, M. S. (2023). Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review.
Neural Processing Letters,
55(4), 4519-4622.
https://doi.org/10.1007/s11063-022-11055-6
Khan, M. B., Behera, H., Sahoo, T., & Neelamani, S. (2021). Boundary element method for wave trapping by a multi-layered trapezoidal breakwater near a sloping rigid wall.
Meccanica,
56, 317-334.
https://doi.org/10.1007/s11012-020-01286-z
Koley, S., Panduranga, K., Almashan, N., Neelamani, S., & Al-Ragum, A. (2020). Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters.
Ocean Engineering,
218, 108218.
https://doi.org/10.1016/j.oceaneng.2020.108218
Lee, W. D., Jeong, Y. M., & Hur, D. S. (2019). Wave control by tide-adapting submerged breakwater.
Journal of Ocean Engineering and Technology,
33(6), 573-580.
https://doi.org/10.26748/KSOE.2019.081
Lee, J., Jeong, Y. M., Kim, J. S., & Hur, D. S. (2022). Analysis of hydraulic characteristics according to the cross-section changes in submerged rigid vegetation.
Journal of Ocean Engineering and Technology,
36(5), 326-339.
https://doi.org/10.26748/KSOE.2022.028
Loukili, M., Dutykh, D., Nadjib, C., Ning, D., & Kotrasova, K. (2021). Analytical and numerical investigations applied to study the reflections and transmissions of a rectangular breakwater placed at the bottom of a wave tank.
Geosciences,
11(10), 430.
https://doi.org/10.3390/geosciences11100430
Min, E. H., Koo, W., & Kim, M. H. (2023). Wave characteristics over a dual porous submerged breakwater using a fully nonlinear numerical wave tank with a porous domain.
Journal of Marine Science and Engineering,
11(9), 1648.
https://doi.org/10.3390/jmse11091648
Ni, Y. L., & Teng, B. (2021a). Bragg resonant reflection of water waves by a Bragg breakwater with porous rectangular bars on a sloping permeable seabed.
Ocean Engineering,
235, 109333.
https://doi.org/10.1016/j.oceaneng.2021.109333
Ni, Y. L., & Teng, B. (2021b). Bragg resonant reflection of water waves by a Bragg breakwater with porous trapezoidal bars on a sloping permeable seabed.
Applied Ocean Research,
114, 102770.
https://doi.org/10.1016/j.apor.2021.102770
Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In: Porto V. W, Saravanan N, Waagen D, Eiben A. E, eds.
Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science.
1447: p 591-600 Springe:
https://doi.org/10.1007/BFb00408
Tavana, H., & Khanjani, M. J. (2013). Reducing hydroelastic response of very large floating structure: a literature review.
International Journal of Computer Applications,
71(5), 13-17.
Wang, C. M., Tay, Z. Y., Takagi, K., & Utsunomiya, T. (2010). Literature review of methods for mitigating hydroelastic response of VLFS under wave action.
Applied Mechanics Reviews,
63(3), 030802.
https://doi.org/10.1115/1.4001690
Watanabe, E., Wang, C. M., Utsunomiya, T., & Moan, T. (2004). Very large floating structures: applications, analysis and design (Report No. 2004-02). CORE Report, 2, 104-109.
Zhang, P., Li, Y., Tang, Y., Zhang, R., Li, H., & Gu, J. (2023). Multi-objective optimization and dynamic response predictions of an articulated offshore wind turbine.
Ocean Engineering,
273, 114017.
https://doi.org/10.1016/j.oceaneng.2023.114017
Zhu, K., Shi, H., Han, M., & Cao, F. (2022). Layout study of wave energy converter arrays by an artificial neural network and adaptive genetic algorithm.
Ocean Engineering,
260, 112072.
https://doi.org/10.1016/j.oceaneng.2022.112072