Balas, CE., Koc, L., & Balas, L. (2004). Predictions of Missing Wave Data by Recurrent Neuronets.
Journal of Waterway, Port, Coastal, and Ocean Engineering,
130(5), 256-265.
https://doi.org/10.1061/(ASCE)0733-950X(2004)130:5(256)
Boser, BE., Guyon, I., & Vapnik, VN. (1992). A Training Algorithm for Optimal Margin Classifiers.
Proceedings of the Fifth Annual Workshop on Computational Learning Theory.
5: p 144-152 Pittsburgh. ACM:
https://doi.org/10.1145/130385.130401
Chen, J., Pillai, AC., Johanning, L., & Ashton, I. (2021). Using Machine Learning to Derive Spatial Wave Data: A Case Study for a Marine Energy Site.
Environmental Modelling & Software,
142, 105066.
https://doi.org/10.1016/j.envsoft.2021.105066
De Rouck, J., Van de Walle, B., & Geeraerts, J. (2004). Crest Level Assessment of Coastal Structures by Full Scale Monitoring, Neural Network Prediction and Hazard Analysis on Permissible Wave Overtoppingg - (CLASH). Proceedings of the EurOCEAN 2004 (European Conference on Marine Science & Ocean Technology). Galway, Ireland. EVK3-CT-2001-00058 p 261-262.
Dwarakish, GS., Rakshith, S., & Natesan, U. (2013). Review on Applications of Neural Network in Coastal Engineering. Artificial Intelligent Systems and Machine Learning, 5(7), 324-331.
Den Bieman, JP., Wilms, JM., Van den Boogaard, HFP., & Van Gent, MRA. (2020). Prediction of Mean Wave Overtopping Discharge Using Gradient Boosting Decision Trees.
Water,
12(6), 1703.
https://doi.org/10.3390/w12061703
Pullen, T., Allsop, NWH., Bruce, T., Kortenhaus, A., Schüttrumpf, H., & van der Meer, JW. (2007). European Manual for the Assessment of Wave Overtopping. In: Pullen T, Allsop NWH, Bruce T, Kortenhaus A, Schüttrumpf H, van der Meer JW, eds. HR Wallingford.
Van der Meer, JW., Allsop, NWH., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., & Zanuttigh, B. (2018). Manual on Wave Overtopping of Sea Defences and Related Structures: An Overtopping Manual Largely Based on European Research, but for Worldwide Application (2
nd ed.).
EurOtop. Retrieved from
http://www.overtopping-manual.com/assets/downloads/EurOtop_II_2018_Final_version.pdf
Formentin, SM., Zanuttigh, B., & van der Meer, JW. (2017). A Neural Network Tool for Predicting Wave Reflection, Overtopping and Transmission.
Coastal Engineering Journal,
59(1), 1750006-1-1750006-31.
https://doi.org/10.1142/S0578563417500061
Gandomi, M., Moharram, DP., Iman, V., & Mohammad, RN. (2020). Permeable Breakwaters Performance Modeling: A Comparative Study of Machine Learning Techniques.
Remote Sensing,
12(11), 1856.
https://doi.org/10.3390/rs12111856
Goyal, R., Singh, K., & Hegde, AV. (2014). Quarter Circular Breakwater: Prediction 3 of Transmission Using Multiple Regression 4 and Artificial Neural Network. Marine Technology Society Journal, 48(1.
Gracia, S., Olivito, J., Resano, J., Martin-del-Brio, B., Alfonso, M., & Alvarez, E. (2021). Improving Accuracy on Wave Height Estimation Through Machine Learning Techniques.
Ocean Engineering,
236, 108699.
https://doi.org/10.1016/j.oceaneng.2021.108699
Granta, F., & Nunno, FD. (2021). Artificial Intelligence Models for Prediction of the Tide Level in Venice.
Stochastic Environmental Research and Risk Assessment,
35, 2537-2548.
https://doi.org/10.1007/s00477-021-02018-9
Hosseinzadeh, S., Etemad-Shahidi, A., & Koosheh, A. (2021). Prediction of Mean Wave Overtopping at Simple Sloped Breakwaters Using Kernel-based Methods.
Journal of Hydroinformatics,
23(5), 1030-1049.
https://doi.org/10.2166/hydro.2021.046
Kang, DH., & Oh, SJ. (2019). A Study of Machine Learning Model for Prediction of Swelling Waves Occurrence on East Sea.
Journal of Korean Institute of Information Technology,
17(9), 11-17.
https://doi.org/10.14801/jkiit.2019.17.9.11
Kankal, M., & Yuksek, O. (2012). Artificial Neural Network Approach for Assessing Harbor Tranquility: The Case of Trabzon Yacht Harbor, Turkey.
Applied Ocean Research,
38, 23-31.
https://doi.org/10.1016/j.apor.2012.05.009
Kim, DH., Kim, YJ., Hur, DS., Jeon, HS., & Lee, CH. (2010). Calculating Expected Damage of Breakwater Using Artificial Neural Network for Wave Height Calculation. Journal of Korean Society of Coastal and Ocean Engineers, 22(2), 126-132.
Kim, HI., & Kim, BH. (2020). Analysis of Major Rainfall Factors Affecting Inundation Based on Observed Rainfall and Random Forest.
Journal of the Korean Society of Hazard Mitigation,
20(6), 301-310.
https://doi.org/10.9798/KOSHAM.2020.20.6.301
Kim, T., Kwon, S., & Kwon, Y. (2021). Prediction of Wave Transmission Characteristics of Low-Crested Structures with Comprehensive Analysis of Machine Learning.
Sensors,
21(24), 8192.
https://doi.org/10.3390/s21248192
Kim, YE., Lee, KE., & Kim, GS. (2020). Forecast of Drought Index Using Decision Tree Based Methods.
Journal of the Korean Data & Information Science Society,
31(2), 273-288.
https://doi.org/10.7465/jkdi.2020.31.2.273
Koo, MH., Park, EG., Jeong, J., Lee, HM., Kim, HG., Kwon, MJ., & Jo, SB. (2016). Applications of Gaussian Process Regression to Groundwater Quality Data.
Journal of Soil and Groundwater Environment,
21(6), 67-79.
https://doi.org/10.7857/JSGE.2016.21.6.067
Kuntoji, G., Manu, R., & Subba, R. (2020). Prediction of Wave Transmission over Submerged Reef of Tandem Greakwater Using PSO-SVM and PSO-ANN Techniques.
ISH Journal of Hydraulic Engineering,
26(3), 283-290.
https://doi.org/10.1080/09715010.2018.1482796
Lee, GH., Kim, TG., & Kim, DS. (2020). Prediction of Wave Breaking Using Machine Learning Open Source Platform.
Journal of Korean Society Coastal and Ocean Engineers,
32(4), 262-272.
https://doi.org/10.9765/KSCOE.2020.32.4.262
Lee, JS., & Suh, KD. (2020). Development of Stability Formulas for Rock Armor and Tetrapods Using Multigene Genetic Programming.
Journal of Waterway, Port, Coastal, and Ocean Engineering,
146(1), 04019027.
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000540
Lee, SB., & Suh, KD. (2019). Development of Wave Overtopping Formulas for Inclined Seawalls using GMDH Algorithm.
KSCE Journal of Civil Engineering,
23, 1899-1910.
https://doi.org/10.1007/s12205-019-1298-1
Li, B., Yin, J., Zhang, A., & Zhang, Z. (2018). A Precise Tidal Level Prediction Method Using Improved Extreme Learning Machine with Sliding Data Window.
In 2018 37th Chinese Control Conference (CCC), 1787-1792.
http://doi.org/10.23919/ChiCC.2018.8482902
Mahjoobi, J., Etemad-Shahidi, A., & Kazeminezhad, MH. (2008). Hindcasting of Wave Parameters Using Different Soft Computing Methods.
Applied Ocean Research,
30(1), 28-36.
https://doi.org/10.1016/j.apor.2008.03.002
Montaño, J., Coco, G., Antolínez, JAA., Beuzen, T., Bryan, KR., Cagigal, L., & Vos, K. (2020). Blind Testing of Shoreline Evolution Models.
Scientific Report,
10, 2137.
https://doi.org/10.1038/s41598-020-59018-y
Na, YY., Park, JG., & Moon, IC. (2017). Analysis of Approval Ratings of Presidential Candidates Using Multidimensional Gaussian Process and Time Series Text Data. Proceedings of the Korean Operations Research And Management Society, Yeosu. 1151-1156.
Park, JS., Ahn, KM., Oh, CY., & Chang, YS. (2020). Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network.
Journal of Korean Society Coastal and Ocean Engineers,
32(6), 561-568.
https://doi.org/10.9765/KSCOE.2020.32.6.561
Passarella, M., Goldstein, EB., De Muro, S., & Coco, G. (2018). The Use of Genetic Programming to Develop a Predictor of Swash Excursion on Sandy Beaches.
Natural Hazards and Earth System Sciences,
18, 599-611.
https://doi.org/10.5194/nhess-18-599-2018
Rigos, A., Tsekouras, GE., Chatzipavlis, A., & Velegrakis, AF. (2016). Modeling Beach Rotation Using a Novel Legendre Polynomial Feedforward Neural Network Trained by Nonlinear Constrained Optimization. In: Iliadis L, Maglogiannis I, eds.
Artificial Intelligence Applications and Innovations. AIAI 2016, IFIP Advances in Information and Communication Technology:
475: p 167-179.
Shahabi, S., Khanjani, M., & Kermani, MH. (2016). Significant Wave Height Forecasting Using GMDH Model.
International Journal of Computer Applications,
133(6), 13-16.
Shamshirband, S., Mosavi, A., Rabczuk, T., Nabipour, N., & Chau, KW. (2020). Prediction of Significant Wave Height; Comparison Between Nested Grid Numerical Model, and Machine Learning Models of Artificial Neural Networks, Extreme Learning and Support Vector Machines.
Engineering Applications of Computational Fluid Mechanics,
14(1), 805-817.
https://doi.org/10.1080/19942060.2020.1773932
Van der Meer, JW. (1988). Rock Slopes and Gravel Beaches under Wave Attack (Ph.D. thesis). Delft University of Technology, Delft Hydraulics Report; 396.
Wilson, KE., Adams, PN., Hapke, CJ., Lentz, EE., & Brenner, O. (2015). Application of Bayesian Networks to Hindcast Barrier Island Morphodynamics.
Coastal Engineering,
102, 30-43.
https://doi.org/10.1016/j.coastaleng.2015.04.006
Zanuttigh, B., Formentin, SM., & Van der Meer, JW. (2014). Advances in Modelling Wave- structure Interaction Tthrough Artificial Neural Networks. Coastal Engineering Proceedings, 1(34), 693.
Zanuttigh, B., Formentin, SM., & Van der Meer, JW. (2016). Prediction of Extreme and Tolerable Wave Overtopping Discharges Thorough an Advanced Neural Network.
Ocean Engineering,
127, 7-22.