Alglart, H. (1993). Modeling of Vapour Generation at Wall in Subcooled Boiling Two-phase Flow In First CFDS International User Conference. Oxford, UK. p 183-207.
Alglart, H., & Nylund, O. (1996). CFD Application to Prediction of Void Distribution in Two-phase Bubbly Flows in Rod Bundles.
Journal of Nuclear Engineering and Design,
163(1–2), 81-98.
https://doi.org/10.1016/0029-5493(95)01160-9
Bartolemei, GG., & Chanturiya, VM. (1967). Experimental Study of True Void Fraction When Boiling Subcooled Water in Vertical Tubes. Journal of Thermal Engineering, 14(2), 123-128.
Bergles, AE., & Rohsenow, WM. (1964). The Determination of Forced-Convection Surface-Boiling Heat Transfer.
Journal of Heat Transfer,
86(3), 365-372.
https://doi.org/10.1115/1.3688697
Domalapally, P., Rizzo, E., Richard, LS., Subba, F., & Zanio, R. (2012). CFD Analysis of Flow Boiling in the ITER First Wall.
Fusion Engineering and Design,
87(5–6), 556-560.
https://doi.org/10.1016/j.fusengdes.2012.01.024
Gu, J., Wang, Q., Wu, Y., Lyu, J., Li, S., & Yao, W. (2017). Modeling of Subcooled Boiling by Extending the RPI Wall Boiling Model to Ultra-high Pressure Conditions.
Applied Thermal Engineering,
124, 571-584.
https://doi.org/10.1016/j.applthermaleng.2017.06.017
Jeong, TW. (2019). Vessel Greenhouse Gas (GHG) Reduction Strategy Technology and Prospect. KRISO.
Krepper, E., Koncar, B., & Egorov, Y. (2007). CFD Modeling of Subcooled Boiling - Concept, Validation and Application to Fuel Assembly Design.
Journal of Nuclear Engineering and Design,
237(7), 716-731.
https://doi.org/10.1016/j.nucengdes.2006.10.023
Kurul, N. (1990). Multidimensional Effects in Two-phase Flow Including Phase Change (Ph.D. Thesis). Rensselaer Polytechnic Institute.
Kurul, N., & Podowski, MZ. (1991). On the Modeling of Multidimensional Effects in Boiling Channels. Proceedings of the 27th National Heat Transfer Conference Minneapolis, Minnesota: 301-314.
Lee, JM., Kim, JH., Kim, SG., Kim, TW., & Kim, MS. (2019). Hydrogen Fuel Cell Ship Overview and Technology Development Trend Introduction. Journal of the Korean Society of Shipbuilding, 56, 3-9.
Lee, TH., Park, GC., & Lee, DJ. (2002). Local Flow Characteristics of Subcooled Boiling Flow of Water in a Vertical Concentric Annulus.
International Journal of Multiphase Flow,
28(8), 1351-1368.
https://doi.org/10.1016/S0301-9322(02)00026-5
Lemmert, M., & Chawla, JM. (1977). Influence of Flow Velocity on Surface Boiling Heat Transfert Coefficient. Heat Transfer in Boiling, 111-116.
Nemitallah, MA., Habib, MA., Mansour, RB., & Nakla, ME. (2015). Numerical Predictions of Flow Boiling Characteristics: Current Status, Model Setup and CFD Modeling for Different Non-uniform Heating Profiles.
Applied Thermal Engineering,
75, 451-460.
https://doi.org/10.1016/j.applthermaleng.2014.09.036
Park, HS. (2019). IMO Aims to Reduce Greenhouse Gas by 40%, by 2030. KMI.
Rogers, JT., & Li, JH. (1994). Prediction of the Onset of Significant Void in Flow Boiling of Water.
Journal of Heat Transfer,
116(4), 1049-1053.
https://doi.org/10.1115/1.2911444
Rohsenow, WM. (1952). A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids.
Transactions of the ASME,
74, 969.
Sontireddy, VR., & Hari, S. (2016). Subcooled Boiling: Validation by Using Different CFD Models.
2016 IEEE 23rd International Conference on High Performance Computing Workshops. 90-99 https://doi.org/10.1109/HiPCW.2016.021.
Tolubinsky, VI., & Kostanchuk, DM. (1970). Vapour Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling. Heat Transfer 1970, Preprints of Papers Presented at the 4th International Heat Transfer Conference, 5 Paris, France: B2-8.
https://doi.org/10.1615/IHTC4.250
Unal, HC. (1976). Maximum Bubble Diameter, Maximum Bubble-growth Time and Bubble-growth Rate During the Subcooled Nucleate Flow Boiling of Water up to 17.7 MN/m
2.
International Journal of Heat and Mass Transfer,
19(6), 643-649.
https://doi.org/10.1016/0017-9310(76)90047-8