Delefortrie, G., Eloot, K., Lataire, E., Van Hoydonck, W., Vantorre, M., 2016. Captive Model Tests Based 6 DOF Shallow Water Manoeuvring Model. Proceedings of the 4th International Conference on Ship Manoeuvring in Shallow and Confined Water (MASHCON). Hamburg, Germany: p 273-286
https://doi.org/10.18451/978-3-939230-38-0
.
Di Mascio, A., Dubbioso, G., Notaro, C., Viviani, M., 2011. Investigation of Twin-Screw Naval Ships Maneuverability Behavior. Journal of Ship Research. 55(4):221-248
https://doi.org/10.5957/JOSR.55.4.090031
.
Duarte, HO., Droguett, EL., Martins, MR., Lutzhoft, M., Pereira, PS., Lloyd, J., 2016. Review of Practical Aspects of Shallow Water and Bank Effects. Transactions of the Royal Institution of Naval Architects Part A: International Journal of Maritime Engineering. 158, July. 177-186
https://doi.org/10.3940/rina.ijme.2016.a3.362
.
Fuji, J., Tanaka, K., 1971. Traffic Capacity. The Journal of Navigation. 24, 543-552.
IMO, 2002. Resolution MSC, 137(76):Standard for Ship Maneuverability. Report of the Maritime Safety Committe on Its Seventy-Sixth Session-Annex 6..
ITTC, 2011. Practical Guidelines for Ship CFD Applications. ITTC – Recommended Procedures and Guidelines, 11-18.
Khanfir, S., Hasegawa, K., Nagarajan, V., Shouji, K., Lee, SK., 2011. Manoeuvring Characteristics of Twin-Rudder Systems: Rudder-Hull Interaction Effect on the Manoeuvrability of Twin-Rudder Ships. Journal of Marine Science and Technology. 16(4):472-490
https://doi.org/10.1007/s00773-011-0140-3
.
Kim, YG., Kim, SY., Kim, HT., Lee, SW., Yu, BS., 2007. Prediction of the Maneuverability of a Large Container Ship with Twin Propellers and Twin Rudders. Journal of Marine Science and Technology. 12(3):130-138
https://doi.org/10.1007/s00773-007-0246-9
.
Kim, DJ., Choi, H., Kim, YG., Yeo, DJ., 2021. Mathematical Model for Harbour Manoeuvres of Korea Autonomous Surface Ship (KASS) Based on Captive Model Tests. Proceedings of Conference of Korean Association of Ocean Science and Technology Societies.
Lee, MC., Nieh, CY., Kuo, HC., Huang, JC., 2020. A Collision Avoidance Method for Multi-Ship Encounter Situations. Journal of Marine Science and Technology (Japan). 25(3):925-942
https://doi.org/10.1007/s00773-019-00691-8
.
Mai, TL., Nguyen, TT., Jeon, M., Yoon, HK., 2020. Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method. Journal of Koran Navigation and Port Research. 44(2):53-64.
Quérard, A., Temarel, P., Turnock, S., 2008. Influence of Viscous Effects on the Hydrodynamics of Ship-Like Section Undergoing Symmetric and Anti-Symmetric Motions Using RANS. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal: p 683-692
https://doi.org/10.1115/OMAE2008-57330
.
Shaobo, W., Yingjun, Z., Lianbo, L., 2020. A Collision Avoidance Decision-Making System for Autonomous Ship Based on Modified Velocity Obstacle Method. Ocean Engineering. 215, July. 107910
https://doi.org/10.1016/j.oceaneng.2020.107910
.
Taimuri, G., Matusiak, J., Mikkola, T., Kujala, P., Hirdaris, S., 2020. A 6-DOF Maneuvering Model for the Rapid Estimation of Hydrodynamic Actions in Deep and Shallow Waters. Ocean Engineering. 218, 108103
https://doi.org/10.1016/j.oceaneng.2020.108103
.
Yasukawa, H., Yoshimura, Y., 2015. Introduction of MMG Standard Method for Ship Maneuvering Predictions. Journal of Marine Science and Technology (Japan). 20(1):37-52
https://doi.org/10.1007/s00773-014-0293-y
.
Yim, JB., 2021. Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision. Journal Navigation Port Research. 45(6):298-305.