Du, M., Hou, Y., Qi, P., & Wang, K. (2020). The impact of different historical typhoon tracks on storm surge: A case study of Zhejiang, China.
Journal of Marine Systems,
206, 103318.
https://doi.org/10.1016/j.jmarsys.2020.103318
Hwang, T., Seo, S. C., Jin, H., Oh, H., & Lee, W. D. (2024). Effects of storm waves caused by typhoon Bolaven (1215) on Korean coast: A comparative analysis with deepwater design waves.
Journal of Ocean Engineering and Technology,
38(4), 149-163.
https://doi.org/10.26748/KSOE.2024.044
Jin, H., Hwang, T., Kim, H. J., Min, B. I., & Lee, W. D. (2024). Storm surge simulations using hypothetical scenarios based on historical typhoons impacting the Korean Peninsula: Analysis of storm surge and overtopping volumes.
Journal of Korea Water Resources Association,
57(12), 1037-1051.
https://doi.org/10.3741/JKWRA.2024.57.12.1037
Kang, J. W., Park, S. J., Moon, S. R., & Yoon, J. T. (2009). Effects of typhoon’s characteristics on the storm surge at Gyeongnam coastal zone. Journal of Korean Society of Coastal and Ocean Engineers, 21(1), 1-14.
Kim, K. O., Choi, B. H., Lee, H. S., & Yuk, J. H. (2018). Regional realtime ocean tide and storm-surge simulation for the South China Sea.
Journal of Korean Society of Coastal and Ocean Engineers,
30(2), 69-83.
https://doi.org/10.9765/kscoe.2018.30.2.69
Kim, T. J., Kwon, H. H., & Kim, K. Y. (2014). Assessment of typhoon trajectories and Synoptic pattern based on probabilistic cluster analysis for the typhoons affecting the Korean peninsula.
Journal of Korea Water Resources Association,
47(4), 385-396.
https://doi.org/10.3741/JKWRA.2014.47.4.385
Ku, H., Maeng, J. H., & Cho, K. (2019). Deterministic estimation of typhoon-induced surges and inundation on Korean coastal regions.
Journal of Korean Society of Coastal and Ocean Engineers,
31(1), 1-8.
https://doi.org/10.9765/KSCOE.2019.31.1.1
Lee, C., Kwak, K., & Son, S. (2016). A numerical simulation of Typhoon Maemi using Delft-3D. Proceedings of the 4th Annual Conference of the Korean Society of Coastal Disaster Prevention.
Lee, D. K., Jang, D. E., & Wi, T. K. (1992). Typhoons approaching the Korean Peninsula, 1960–1989: Part I: Statistics and synoptic overview. Asia-Pacific Journal of Atmospheric Science, 28(2), 133-147.
Lee, W. D., Yeom, G. S., Kim, J., Lee, S., & Kim, T. (2022). Runup characteristics of a tsunami-like wave on a slope beach.
Ocean Engineering,
256, 111542.
https://doi.org/10.1016/j.oceaneng.2022.111897
Luettich, R. A Jr., Westerink, J. J., & Scheffner, N. W. (1992). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL (Technical Report DRP-92-6). US Army Engineer Waterways Experiment Station.
McInnes, K. L., Walsh, K. J. E., Hubbert, G. D., & Beer, T. (2003). Impact of sea-level rise and storm surges on a coastal community.
Natural Hazards,
30, 187-207.
https://doi.org/10.1023/A:1026118417752
Moon, S. R., Kang, T. S., Nam, S. Y., & Hwang, J. (2007). A study on scenario to establish coastal inundation prediction map due to storm surge. Journal of Korean Society of Coastal and Ocean Engineers, 19(5), 492-501.
Park, D. S., Ho, C. H., & Hwang, J. (2008). Influence of typhoon landfall and its track characteristics in Gyeongsangbuk-do. Atmosphere, 18(4), 525-532.
Park, J. K., Kim, B. S., Jung, W. S., Kim, E. B., & Lee, D. G. (2006). Change in statistical characteristics of typhoon affecting the Korean Peninsula. Atmosphere, 16(1), 1-17.
Park, J. K., Kim, M. K., Kim, D. C., & Yoon, J. S. (2013). Study on development of surge-tide-wave coupling numerical model for storm surge prediction.
Journal of Ocean Engineering and Technology,
27(4), 33-44.
https://doi.org/10.5574/KSOE.2013.27.4.033
Park, S. J., Kang, J. W., Moon, S. R., & Kim, Y. S. (2011). Simulation of inundation at Mokpo city using a coupled tide-surge model.
Journal of Korean Society of Coastal and Ocean Engineers,
23(1), 93-100.
https://doi.org/10.9765/KSCOE.2011.23.1.093
Park, Y. H., & Park, W. S. (2021). Characteristics of storm surge by forward speed of typhoon in the south coast of Korea.
Journal of Korean Society of Coastal and Ocean Engineers,
33(5), 187-194.
https://doi.org/10.9765/KSCOE.2021.33.5.187
Peng, M., Xie, L., & Pietrafesa, L. J. (2006). A numerical study on hurricane-induced storm surge and inundation in Charleston Harbor, South Carolina.
Journal of Geophysical Research Oceans,
111(C8),
https://doi.org/10.1029/2004JC002755
Qin, G., Fang, Z., Zhao, S., Meng, Y., Sun, W., Yang, G., Wang, L., & Feng, T. (2023). Storm Surge Inundation Modulated by Typhoon Intensities and Tracks: Simulations Using the Regional Ocean Modeling System (ROMS).
Journal of Marine Science and Engineering,
11(6), 1112.
https://doi.org/10.3390/jmse11061112
Rego, J. L., & Li, C. (2009). On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study.
Geophysical Research Letters,
36(7),
https://doi.org/10.1029/2008GL036953
Seo, S. C., Kim, H. J., Hwang, T., & Lee, W. D. (2023). Storm wave characteristics during typhoons Maysak and Haishen on the east and south coasts of Korea.
Journal of Coastal Research,
39(1), 129-142.
https://doi.org/10.2112/JCOASTRES-D-22TM-00001.1
Son, B., & Do, K. (2022). Numerical simulation of storm waves during typhoon Maysak and Haishen in the Korean Peninsula.
Journal of Coastal Disaster Prevention,
9(1), 43-59.
https://doi.org/10.20481/kscdp.2022.9.1.43