Ahn, H., Park, S., Kim, K.-H., & Ha, Y.-J. (2022). A Comparative study on the response characteristics of the semi-submersible platform of a 15 MW floating offshore wind turbine system in operational conditions.
Journal of Wind Energy,
13(4), 17-25.
https://doi.org/10.33519/KWEA.2022.13.4.002
Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., & Barter, G. (2020).
Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-megawatt offshore reference wind turbine (NREL/TP-5000-76773), National Renewable Energy Laboratory;
https://doi.org/10.2172/1660012
Bae, K. T., Jeong, Y. H., Jin, B. M., Kim, Y. T., Cho, I. S., & Kang, Y. (2022) October 19. Behavior of 15MW floating offshore wind turbine hybrid floater via basin model tests. KSCE Convention Proceedings, 341-342 The Korean Society of Civil Engineers (KSCE) Conference Pusan, Korea.
Barooni, M., Ashuri, T., Velioglu Sogut, D., Wood, S., & Ghaderpour Taleghani, S. (2023). Floating offshore wind turbines: Current status and future prospects.
Energies,
16(1), 2.
https://doi.org/10.3390/en16010002
Barter, G., Gaertner, E., Bortolotti, P., Abbas, N. J., Rinker, J., Zahle, F., Branlard, E., Lapadron, Hall M., Dzalkind, ., & Issraman, . (2022).
IEAWindTask37/IEA-15-240-RWT: IEA wind 15-MW reference wind turbine update (v1.1) [Computer software]. Zenodo:
https://doi.org/10.5281/ZENODO.6330754
Boo, S. Y., Ha, Y.-J., Shelley, S. A., Park, J.-Y., Lim, C.-H., & Kim, K.-H. (2024). Concept design of a 15 MW TLP-Type floating wind platform for Korean offshore installation.
Journal of Marine Science and Engineering,
12(5), 796.
https://doi.org/10.3390/jmse12050796
Chen, C., Ma, Y., & Fan, T. (2022). Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines.
Renewable and Sustainable Energy Reviews,
157, 112036.
https://doi.org/10.1016/j.rser.2021.112036
Choi, S.-Y., Moon, B.-S., & Kim, T.-G. (2021). The maritime environment impact assessment of offshore floating wind power in Ulsan - A focus on habitat equivalence analysis -.
Journal of Navigation and Port Research,
45(3), 130-137.
https://doi.org/10.5394/KINPR.2021.45.3.130
DNV. (2018). Floating wind turbine structures (DNV-ST-0119).
DNV. (2019). Coupled analysis of floating wind turbines (DNV-RP-0286).
Fowler, M., Lenfest, E., Viselli, A., Goupee, A., Kimball, R., Bergua, R., Wang, L., Zalkind, D., Wright, A., & Robertson, A. (2023). Wind/Wave testing of a 1:70-Scale performance-matched model of the IEA wind 15 MW reference wind turbine with real-time ROSCO control and floating feedback.
Machines,
11(9), 865.
https://doi.org/10.3390/machines11090865
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., & Viselli, A. (2020). IEA Wind TCP Task 37: Definition of the IEA 15-megawatt offshore reference wind turbine (NREL/TP--5000-75698). National Renewable Energy Laboratory, https://doi.org/10.2172/1603478.
Gueydon, S., & Weller, S. (2013). Study of a floating foundation for wind turbines.
Journal of Offshore Mechanics and Arctic Engineering,
135(3), 031903.
https://doi.org/10.1115/1.4024271
Ha, Y.-J., Ahn, H., Park, S., Park, J.-Y., Jung, D. W., Jung, J.-S., Won, Y. U., Han, I., Kim, K.-H., & Lee, J. (2022). Literature review of model testing techniques for performance evaluation of floating offshore wind turbine in ocean basin.
Journal of Wind Energy,
13(4), 26-41.
https://doi.org/10.33519/kwea.2022.13.4.003
Harger, A., Carmo, L. H. S., Gay Neto, A., Simos, A. N., Franzini, G. R., & Vieira, G. H. R. (2023). Modal analysis of 15 MW semi-submersible floating wind turbine: Investigation on the main influences in natural vibration.
Wind,
3(4), 548-566.
https://doi.org/10.3390/wind3040031
Hu, M., Shi, J., Yang, S., Chen, M., Tang, Y., & Liu, S. (2024). Current status and future trends in installation, operation and maintenance of offshore floating wind turbines.
Journal of Marine Science and Engineering,
12(12), 2155.
https://doi.org/10.3390/jmse12122155
Ivanov, G., Hsu, I.-J., & Ma, K.-T. (2023). Design considerations on semi-submersible columns, bracings and pontoons for floating wind.
Journal of Marine Science and Engineering,
11(9), 1663.
https://doi.org/10.3390/jmse11091663
Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009).
Definition of a 5-MW reference wind turbine for offshore system development (NREL/TP-500-38060), National Renewable Energy Laboratory;
https://doi.org/10.2172/947422
Kharade, A. S., & Kapadiya, S. V. (2014). Offshore engineering: An overview of types and loadings on structures. International Journal of Structural and Civil Engineering Research, 3(2), 16-28.
Kim, T., & Maeng, J. (2023). A study on offshore wind farm development through a review of floating offshore wind power project cases in Norway.
Journal of Wind Energy,
14(2), 14-25.
https://doi.org/10.33519/KWEA.2023.14.2.002
Lee, H., Bae, Y. H., Kim, D., Park, S., Kim, K.-H., & Hong, K. (2018). Study on optimal damping model of very large offshore semi-submersible structure.
Journal of Ocean Engineering and Technology,
32(1), 1-8.
https://doi.org/10.26748/KSOE.2018.2.32.1.001
Li, D., Lee, I., Yi, C., Gao, W., Song, C., Fu, S., Kim, M., Ran, A., & Liu, T. (2023a). Numerical modeling and global performance analysis of a 15-MW semisubmersible floating offshore wind turbine (FOWT).
Ocean Systems Engineering,
13(3), 287-312.
https://doi.org/10.12989/OSE.2023.13.3.287
Liu, Y., Fontanella, A., Wu, P., Ferrari, R. M. G., & Van Wingerden, J.-W. (2020). Fault detection of the mooring system in floating offshore wind turbines based on the wave-excited linear model.
Journal of Physics: Conference Series,
1618(2), 022049.
https://doi.org/10.1088/1742-6596/1618/2/022049
Musial, W. (2005). Engineering challenges for floating offshore wind turbines. Proceedings of Copenhagen Offshore Wind Conference Copenhagen Offshore Wind Conference Copenhagen, Denmark.
Neira, E., Fuentes, M., Salgado, F., & Jelves, L. (2021). Floating offshore wind power: A case study for Concepción bay, Chile. 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) 1-6.
https://doi.org/10.1109/CHILECON54041.2021.9702952
Nihei, Y., Iijima, K., Murai, M., & Ikoma, T. (2014) June 8. A comparative study of motion performance of four different FOWT designs in combined wind and wave loads. International Conference on Offshore Mechanics and Arctic Engineering (45493p. V007T05A025). American Society of Mechanical Engineers
https://doi.org/10.1115/OMAE2014-24643
Park, J.-H., & Shin, H. (2015). A study on the optimal shape design of a floating offshore wind turbine.
Journal of the Society of Naval Architects of Korea,
52(3), 171-179.
https://doi.org/10.3744/SNAK.2015.52.3.171
Rim, C. W., Song, J. S., & Kim, J. D. (2011). Technical characteristics and development trends in floating wind turbines.
Journal of Drive and Control,
8(1), 40-43.
https://doi.org/10.7839/KSFC.2011.8.1.040
Saunders, B., & Nagamune, R. (2023). Fatigue load minimization for a position-controlled floating offshore wind turbine.
Journal of Marine Science and Engineering,
11(12), 2274.
https://doi.org/10.3390/jmse11122274
Sim, I.-H. (2024). Wind load estimation of a 10 MW floating offshore wind turbine during transportation and installation by wind tunnel tests.
Journal of Wind Energy,
15(1), 11-20.
https://doi.org/10.33519/KWEA.2024.15.1.002
Sohn, J. M., Shin, S. H., & Hong, K. (2015). A study on equivalent design wave approach for a wave-offshore wind hybrid power generation system.
Journal of the Korean Society for Marine Environment & Energy,
18(3), 135-142.
https://doi.org/10.7846/JKOSMEE.2015.18.3.135
Udoh, I. E., De Ridder, E.-J., Williams, R., Vinayan, V., Gant, F., Bouman, G., & Chen, Q. (2023). Model testing of a passively controlled 15 MW floating wind tension leg platform. [Conference presentation]. Offshore Technology Conference (D011S012R006)
https://doi.org/10.4043/32368-MS
Wang, J., Dai, Y., Li, L., Gao, Y., Zhao, Y., & Peng, T. (2024). Installation model test of a new concept hybrid spar with 15 MW wind turbine. the 34th International Ocean and Polar Engineering Conference, ISOPE-I, 24-132.
Yang, H.-S., & Lee, Y.-H. (2024). CFD analysis for determining surge-direction drag coefficient of FOWT based on simulation time step.
New & Renewable Energy,
20(2), 17-25.
https://doi.org/10.7849/ksnre.2024.0012
Yang, W., Tian, W., Hvalbye, O., Peng, Z., Wei, K., & Tian, X. (2019). Experimental research for stabilizing offshore floating wind turbines.
Energies,
12(10), 1947.
https://doi.org/10.3390/en12101947
Zhai, Y., Zhao, H., Li, X., & Shi, W. (2022a). Design and dynamic analysis of a novel large-scale barge-type floating offshore wind turbine with aquaculture cage.
Journal of Marine Science and Engineering,
10(12), 1926.
https://doi.org/10.3390/jmse10121926
Zhai, Y., Zhao, H., Li, X., & Shi, W. (2022b). Hydrodynamic responses of a barge-type floating offshore wind turbine integrated with an aquaculture cage.
Journal of Marine Science and Engineering,
10(7), 854.
https://doi.org/10.3390/jmse10070854
Zhang, W., Calderon-Sanchez, J., Duque, D., & Souto-Iglesias, A. (2024). Computational fluid dynamics (CFD) applications in floating offshore wind turbine (FOWT) dynamics: A review.
Applied Ocean Research,
150, 104075.
https://doi.org/10.1016/j.apor.2024.104075
Zhou, S., Li, C., Xiao, Y., Wang, X., Xiang, W., & Sun, Q. (2023). Evaluation of floating wind turbine substructure designs by using long-term dynamic optimization.
Applied Energy,
352, 121941.
https://doi.org/10.1016/j.apenergy.2023.121941