American Petroleum Institute (API). (2005). API-RP-2SK: Design and analysis of station-keeping systems for floating structures.
ANSYS Inc. (2020). AQWA user manual, Release 2020 R2.
Cummins, W. E. (1962). The impulse response function and ship motions (Report 1661). David Taylor Model Basin.
Firouzi, B., Alattas, K. A., Bakouri, M., Alanazi, A. K., Mohammadzadeh, A., Mobayen, S., & Fekih, A. (2022). A type-2 fuzzy controller for floating tension-leg platforms in wind turbines.
Energies,
15(5), 1705.
https://doi.org/10.3390/en15051705
Greiner, A., Gruene, L., & Semmler, W. (2014). Economic growth and the transition from non-renewable to renewable energy.
Environment and Development Economics,
19(4), 417-439.
https://doi.org/10.1017/S1355770X13000491
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., & Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft zur Deutschen hydrographischen Zeitschrift, Reihe A, (12.
International Electrotechnical Commission (IEC). (2005). Wind turbines - Part 1 Design requirements (IEC 614001).
International Electrotechnical Commission (IEC). (2009). Wind energy generation systems—Design requirements for offshore wind turbines (IEC 61400-3).
Jonkman, J. (2010).
Definition of the floating system for phase IV of OC3 (NREL/TP-500-47535), National Renewable Energy Laboratory;
https://doi.org/10.2172/979456
Kaimal, J. C., Wyngaard, J. C. J., Izumi, Y., & Coté, O. R. (1972). Spectral characteristics of surface-layer turbulence.
Quarterly Journal of the Royal Meteorological Society,
98(417), 563-589.
Kyoung, J., Samaria, S., & Kim, J. W. (2020). Time domain structural fatigue analysis of floating offshore platforms: A response-based technique. Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering V001T01A048.
https://doi.org/10.1115/OMAE2020-18314
Kyoung, J., Samaria, S., Kim, J. W., & Duffy, B. (2019). Response-based time domain structural analysis on floating offshore platforms. Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering V001T01A039.
https://doi.org/10.1115/OMAE2019-96139
Lackner, M. A., & Rotea, M. A. (2011). Passive structural control of offshore wind turbines.
Wind Energy,
14(3), 373-388.
https://doi.org/10.1002/we.426
Lee, H., Moon, W., Lee, M., Song, K., Shen, Z., Kyoung, J., Baquet, A., Kim, J., Han, I., Park, S., Kim, K.-H., & Kim, B. (2023). Time-domain response-based structural analysis on a floating offshore wind turbine.
Journal of Marine Science and Application,
22(1), 75-83.
https://doi.org/10.1007/s11804-023-00322-0
Lee, M. J., Zhang, Y., Duan, M., Zheng, M., & Lee, S. J. (2024). A study on dynamic analysis of floating offshore wind turbines by using a novel frequency domain model. Proceedings of the 34th International Ocean and Polar Engineering Conference 1044-1051.
Lerch, M., De-Prada-Gil, M., & Molins, C. (2018). A simplified model for the dynamic analysis and power generation of a floating offshore wind turbine.
E3S Web of Conferences,
61, 00001.
https://doi.org/10.1051/e3sconf/20186100001
Maruo, H. (1960). The drift of a body floating on waves. Journal of Ship Research, 4, 1-10.
Mohamad, A. H. H., Zainuddin, M. R. K. V.n., & Ab-Rahim, R. (2023). Does renewable energy transition in the USA and China overcome environmental degradation?
International Journal of Energy Economics and Policy,
13(6), 234-243.
https://doi.org/10.32479/ijeep.14840
Moon, W., Shen, Z., Kyoung, J., Lee, H., Lee, M., Baquet, A., Song, K., Kim, B., & Kim, J. (2022). Time-Domain Response-Based Structural Assessment of a FOWT – Buckling and Ultimate Strength Assessment. ASME 2022 4th International Offshore Wind Technical Conference V001T01A022.
https://doi.org/10.1115/IOWTC2022-96497
Newman, J. N. (1974). Second-order slowly varying forces on vessels in irregular waves. Proceedings of the International Symposium on Dynamics of Marine Vehicles and Structures in Waves.
Park, S., & Choung, J. (2023). Structural design of the substructure of a 10 MW floating offshore wind turbine system using dominant load parameters.
Journal of Marine Science and Engineering,
11(5), 1048.
https://doi.org/10.3390/jmse11051048
Pinkster, J. A. (1980). Low frequency second order wave exciting forces on floating structures. Netherlands Ship Model Basin.
Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., & Luan, C. (2014).
Definition of the semisubmersible floating system for phase II of OC4 (NREL/TP-5000-60601).
https://doi.org/10.2172/1155123
Shin, Y. H., Lee, S. J., & Lee, M. J. (2024). Validation of structural analysis of FOWTs based on stress response in frequency-domain. Proceedings of the Global Naval Architecture & Ocean Engineering Conference (G-NAOE 2024).
Viselli, A. M., Goupee, A. J., & Dagher, H. J. (2015). Model test of a 1:8-scale floating wind turbine offshore in the Gulf of Maine.
Journal of Offshore Mechanics and Arctic Engineering,
137(4), 041901.
https://doi.org/10.1115/1.4030381