Allmark, M., Ellis, R., Ebdon, T., Lloyd, C., Ordonez-Sanchez, S., Martinez, R., Mason-Jones, A., Johnstone, C., & O’Doherty, T. (2021). A detailed study of tidal turbine power production and dynamic loading under grid generated turbulence and turbine wake operation.
Renewable Energy,
169, 1422-1439.
https://doi.org/10.1016/j.renene.2020.12.052
Allmark, M., Ellis, R., Lloyd, C., Ordonez-Sanchez, S., Johannesen, K., Byrne, C., Johnstone, C., O’Doherty, T., & Mason-Jones, A. (2020). The development, design and characterization of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification.
Renewable Energy,
156, 913-930.
https://doi.org/10.1016/j.renene.2020.04.060
Allmark, M., Ordonez Sanchez, S., Wang, S., Kang, Y. S., Jo, C., O’Doherty, T., & Johnstone, C. (2019). An investigation into Reynolds scaling and solidity for a HATT tidal turbine. Proceedings of the European Wave and Tidal Energy Conference 2019.
Bir, G. S., Lawson, M. J., & Li, Y. (2011). Structural design of a horizontal-axis tidal current turbine composite blade.
Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering: 5 Ocean Space Utilization; Ocean Renewable Energy. p 797-808 ASME:
https://doi.org/10.1115/OMAE2011-50063
Brugger, P. A., Markfort, C., & Porte-Agel, F. (2022). Field measurements of wake meandering at a utility-scale wind turbine with nacelle-mounted Doppler lidars.
Wind Energy Science,
7(1), 185-199.
https://doi.org/10.5194/wes-7-185-2022
Chen, L., Wang, H., Yao, Y., Zhang, Y., & Li, J. (2023). Experimental investigation of the seabed topography effects on tidal stream turbine behavior and wake characteristics.
Ocean Engineering,
281, 114682.
https://doi.org/10.1016/j.oceaneng.2023.114682
Garcia-Novo, P., Inubuse, M., Matsuno, T., Kyozuka, Y., Archer, P., Matsuo, H., Henzan, K., & Sakaguchi, D. (2024). Characterization of the wake generated downstream of a MW-scale tidal turbine in Naru Strait, Japan, based on vessel-mounted ADCP data.
Energy,
299, 131453.
https://doi.org/10.1016/j.energy.2024.131453
Garcia-Novo, P., Kyozuka, Y., & Matsuo, H. (2018). Tidal energy resource assessment map for Nagasaki Prefecture.
Proceedings of Grand Renewable Energy 2018,
https://doi.org/10.24752/gre.1.0_237
Gaurier, B., Ikhennicheu, M., Germain, G., & Druault, P. (2020). Experimental study of bathymetry generated turbulence on tidal turbine behaviour.
Renewable Energy,
156, 1158-1170.
https://doi.org/10.1016/j.renene.2020.04.102
Holmedal, L. E., Johari, J., & Myrhaug, D. (2013). The seabed boundary layer beneath waves opposing and following a current.
Continental Shelf Research,
65, 27-44.
https://doi.org/10.1016/j.csr.2013.06.004
Hurubi, S., Stallard, T., Stansby, P., Mullings, H., & Ouro, P. (2023). Characterization of turbulent flow and the wake of a tidal stream turbine in proximity to a ridge.
Proceedings of the European Wave and Tidal Energy Conference 2023.
https://doi.org/10.36688/ewtec-2023-464
Ikhennicheu, M., Germain, G., Druault, P., & Gaurier, B. (2019). Experimental investigation of the turbulent wake past real seabed elements for velocity variations characterization in the water column.
International Journal of Heat and Fluid Flow,
78, 108426.
https://doi.org/10.1016/j.ijheatfluidflow.2019.108426
Jump, E., Macleod, A., & Wills, T. (2020). Review of tidal turbine wake modelling methods: State of the art.
International Marine Energy Journal,
3(2), 91-100.
https://doi.org/10.36688/imej.3.91-100
Mercier, P., & Guillou, S. (2021). The impact of the seabed morphology on turbulence generation in a strong tidal stream.
Physics of Fluids,
33(5), 055125.
https://doi.org/10.1063/5.0047791
Mercier, P., Grondeau, M., Guillou, S., Thiebot, J., & Poizot, E. (2020). Numerical study of the turbulent eddies generated by the seabed roughness. Case study at a tidal power site.
Applied Ocean Research,
97, 102082.
https://doi.org/10.1016/j.apor.2020.102082
Mwero, N., Fu, S., Inamitsu, T., Oyunge, B., Ordonez-Sanchez, S., Garcia-Novo, P., Johnstone, C., & Sakaguchi, D. (2024). Investigation of the effects of irregular bathymetry on the performance and eake vharacteristics of a tidal dtream turbine; a case study of a tidal power site. Proceedings of 7th Asian Offshore Wind, Wave and Tidal Energy Conference Series (AWTEC2024), 10.
Ordonez-Sanchez, S., Allmark, M., Porter, K., Ellis, R., Lloyd, C., Santic, I., O’Doherty, T., & Johnstone, C. (2019). Analysis of a horizontal-axis tidal turbine performance in the presence of regular and irregular waves using two control strategies.
Energies,
12(3), 367.
https://doi.org/10.3390/en12030367
Ouro, P., & Nishino, T. (2021). Performance and wake characteristics of tidal turbines in an infinitely large array.
Journal of Fluid Mechanics,
925, A30.
https://doi.org/10.1017/jfm.2021.692
Ouro, P., & Stoesser, T. (2019). Impact of environmental turbulence on the performance and loadings of a tidal stream turbine.
Flow, Turbulence and Combustion,
102, 613-639.
https://doi.org/10.1007/s10494-018-9975-6
Ouro, P., Stansby, P., Macleod, A., Stallard, T., & Mullings, H. (2023). High-fidelity modelling of a six-turbine tidal array in the Shetlands.
Proceedings of the European Wave and Tidal Energy Conference 2023,
https://doi.org/10.36688/ewtec-2023-442
Ozawa, A., Tsani, T., & Kudoh, Y. (2022). Japan’s pathways to achieve carbon neutrality by 2050–Scenario analysis using an energy modeling methodology.
Renewable and Sustainable Energy Reviews,
169, 112943.
https://doi.org/10.1016/j.rser.2022.112943
Waldman, S., Yamaguchi, S., O’hara Murray, R., & Woolf, D. (2017). Tidal resource and interactions between multiple channels in the Goto Islands, Japan.
International Journal of Marine Energy,
19, 332-344.
https://doi.org/10.1016/j.ijome.2017.09.002
Yan, Y., Xu, S., Liu, C., Zhang, X., Chen, J., Zhang, Z., & Dong, Y. (2022). Research on the hydrodynamic performance of a horizontal-axis tidal current turbine with symmetrical airfoil blades based on swept-back models.
Journal of Marine Science and Engineering,
10(10), 1515.
https://doi.org/10.3390/jmse10101515