ABS. (2017). Guidance notes on geotechnical performance of spudcan foundations.
Castleberry, J. P., & Prebaharan, N. (1985). Clay crusts of the Sunda Shelf-a hazard to jack-up operations. Institution of Engineers Malaysia.
Chakraborty, M., & Kumar, J. (2015). Bearing capacity factors for a conical footing using lower- and upper-bound finite elements limit analysis.
Canadian Geotechnical Journal,
52(12), 2134-2140.
https://doi.org/10.1139/cgj-2014-0507
Chan, N. H. C., Paisley, J. M., & Holloway, G. L. (2008). Characterization of soils affected by rig emplacement and Swiss cheese operations—Natuna Sea, Indonesia, a case study. Proceedings of the 2nd jack-up Asia conference and exhibition, Singapore, 17-18.
Chen, Z., Tho, K. K., Leung, C. F., & Chow, Y. K. (2013). Influence of overburden pressure and soil rigidity on uplift behavior of square plate anchor in uniform clay.
Computers and Geotechnics,
52, 71-81.
https://doi.org/10.1016/j.compgeo.2013.04.002
Choi, J. H. (2020).
A study on the nonlinear structure-soil interaction model of jack-up in soft over stiff clay. [Doctoral dissertation, Seoul National University:
https://hdl.handle.net/10371/169334
Guo, Y., Wang, H., & Lian, J. (2022). Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends.
Energy Conversion and Management,
255, 115319.
https://doi.org/10.1016/j.enconman.2022.115319
Handidjaja, P., Somehsa, P., & Manoj, M. (2004). ‘Swiss-cheese’—A method of degrading soil crust and minimizing risk to punch through problem on the installation of mobile offshore drilling unit (MODU). Proceedings of 15th Southeast Asian Geotechnical Society Conference, 303-306.
Horwath, S., Hassrick, J., Grismala, R., & Diller, E. (2020). Comparison of environmental effects from different offshore wind turbine foundations. (Report No. OCS Study BOEM 2020-041) US Department of the Interio.
Hossain, M. S., Hu, Y., & Randolph, M. F. (2003). Spudcan foundation penetration into uniform clay. 13th International Offshore and Polar Engineering Conference, ISOPE-I-03-177.
Hossain, M. S., Hu, Y., & Randolph, M. F. (2004). Bearing behaviour of spudcan foundation on uniform clay during deep penetration.
Proceedings of 23rd International Conference on Offshore Mechanics and Arctic Engineering, 1,. Parts A and B, 321-328.
https://doi.org/10.1115/OMAE2004-51153
Hossain, M. S., & Randolph, M. F. (2009b). New mechanism-based design approach for spudcan foundations on single layer clay.
Journal of Geotechnical and Geoenvironmental Engineering,
135(9), 1264-1274.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000054
Hossain, M. S., Randolph, M. F., Hu, Y., & White, D. J. (2006). Cavity stability and bearing capacity of spudcan foundations on clay.
Offshore Technology Conference. OTC-17770-MS
https://doi.org/10.4043/17770-MS
Hossain, M. S., Zheng, J., & Huston, A. (2014a). Effect of spudcan geometry on penetration and extraction resistance in clay.
Géotechnique,
65(2), 147-154.
https://doi.org/10.1680/geot.14.T.021
Hossain, M. S., Zheng, J., Menzies, D., Meyer, L., & Randolph, M. F. (2014b). Spudcan penetration analysis for case histories in clay.
Journal of Geotechnical and Geoenvironmental Engineering,
140(7), 04014034.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001133
Hu, P., Stanier, S. A., Cassidy, M. J., & Wang, D. (2014). Predicting peak resistance of spudcan penetrating sand overlying clay.
Journal of Geotechnical and Geoenvironmental Engineering,
140(2), 04013009.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001016
InSafeJIP, M. (2010). Improved guidelines for the prediction of geotechnical performance of spudcan foundations during installation and removal of jack-up units. Joint Industry Funded Project, Woking. RPS Energy UK.
ISO. (2023). Oil and gas industries including lower carbon energy — Site-specific assessment of mobile offshore units — Part 1. Jack-ups: elevated at a site (ISO 19905-1:2023).
https://www.iso.org/standard/79590.html
Kostelnik, A., Guerra, M., Alford, J., Vazquez, J., & Zhong, J. (2007). Jackup mobilization in hazardous soils.
SPE Drilling & Completion,
22(01), 4-15. OnePetro.
https://doi.org/10.2118/88001-PA
Lee, M. J., & Choo, Y. W. (2024). Penetration behavior of jack-up leg with spudcan for offshore wind turbine to multi-layered soils using centrifuge tests.
Journal of Ocean Engineeing and Technolgy,
38(1), 30-42.
https://doi.org/10.26748/KSOE.2023.039
Li, Y. P., Lee, F. H., Goh, S. H., Yi, J. T., & Zhang, X. Y. (2012). Centrifuge study of the effects of lattice leg on penetration resistance and bearing behavior of spudcan foundations in NC clay.
Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, 79-86.
https://doi.org/10.1115/OMAE2012-83137
Lunne, T., Myrvoll, F., & Kjekstad, O. (1981). Observed settlements of five north sea gravity platforms.
Proceedigs of Offshore Technology Conference, OTC-4146-MS.
https://doi.org/10.4043/4146-MS
Martin, C. M., & Randolph, M. (2001). Applications of the lower and upper bound theorems of plasticity to collapse of circular foundations. Proceedings of 10th International Conference on Computer Methods and Advances in Geomechanics, 2, 1417-1428.
Nguyen, A.-D., Nguyen, V.-T., & Kim, Y.-S. (2023). Finite element analysis on dynamic behavior of sheet pile quay wall dredged and improved seaside subsoil using cement deep mixing.
International Journal of Geo-Engineering,
14, 9.
https://doi.org/10.1186/s40703-023-00186-x
Park, S., Kim, G.-Y., & Chang, I. (2024). Experimental study on the effect of surface-projected conditions on the mechanical behavior of pile embedded in sand.
International Journal of Geo-Engineering,
15, 22.
https://doi.org/10.1186/s40703-024-00223-3
Pichler, T., Pucker, T., Hamann, T., Henke, S., & Qiu, G. (2012). High-performance Abaqus simulations in soil mechanics reloaded–chances and frontiers. 2012 SIMULIA Community Conference, 1-30.
Qiu, G., & Grabe, J. (2011). Explicit modeling of cone and strip footing penetration under drained and undrained conditions using a visco-hypoplastic model.
Geotechnik,
34(3), 205-217.
https://doi.org/10.1002/gete.201100004
Qiu, G., & Grabe, J. (2012). Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay.
Canadian Geotechnical Journal,
49(12), 1393-1407.
https://doi.org/10.1139/t2012-085
Qiu, G., Henke, S., & Grabe, J. (2011). Application of a coupled eulerian–lagrangian approach on geomechanical problems involving large deformations.
Computers and Geotechnics,
38(1), 30-39.
https://doi.org/10.1016/j.compgeo.2010.09.002
Randolph, M., Cassidy, M., Gourvenec, S., & Erbrich, C. (2005). Challenges of offshore geotechnical engineering.
Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. p 123-176 Millpress Science Publishers/IOS Press:
https://doi.org/10.3233/978-1-61499-656-9-123
Skempton, A. W. (1951). The bearing capacity of clays. Building Research Congress.
SNAME. (1994).
T&R bulletin 5-05 B: Guidelines for site specific assessment of mobile jack-up units - Gulf of Mexico Annex. (2013). SNAME;
https://www.sname.org/node/1811
Systemes, D. (2012). Abaqus, version 6.11 EF documentation. Rhode Island. Hibbitt, Karlsson and Sorensen, Inc.
Tan, J. P. S., Goh, S. H., & Tan, S. A. (2023). Numerical analysis of a jacked-in pile installation in clay.
International Journal of Geomechanics,
23(6), 04023061.
https://doi.org/10.1061/IJGNAI.GMENG-794
Tho, K. K., Leung, C. F., Chow, Y. K., & Swaddiwudhipong, S. (2010). Eulerian finite-element technique for analysis of jack-up spudcan penetration.
International Journal of Geomechanics,
12(1), 64-73.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000111
Tho, K. K., Leung, C. F., Chow, Y. K., & Swaddiwudhipong, S. (2013). Eulerian finite element simulation of spudcan–pile interaction.
Canadian Geotechnical Journal,
50(6), 595-608.
https://doi.org/10.1139/cgj-2012-0288
Tirant, L., & Pérol, C. (1993). Design guides for offshore structures: Stability and operation of jackups. Technip.
Tovar-Valencia, R. D., Galvis-Castro, A., Salgado, R., & Prezzi, M. (2021). Effect of base geometry on the resistance of model piles in sand.
Journal of Geotechnical and Geoenvironmental Engineering,
147(3), 04020180.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002472
Wu, X., Hu, Y., Li, Y., Yang, J., Duan, L., Wang, T., Adcock, T., Jiang, Z., Gao, Z., Lin, Z., Borthwick, A., & Liao, S. (2019). Foundations of offshore wind turbines: A review.
Renewable and Sustainable Energy Reviews,
104, 379-393.
https://doi.org/10.1016/j.rser.2019.01.012
Yasser, F., Altahrany, A., & Elmeligy, M. (2022). Numerical investigation of the settlement behavior of hybrid system of floating stone columns and granular mattress in soft clay soil.
Internatinal Journal of Geo-Engineering,
13, 12.
https://doi.org/10.1186/s40703-022-00177-4
Zhanabayeva, A., Abdialim, S., Satyanaga, A., Kim, J., & Moon, S.-W. (2022). Comparative analysis of international codes of practice for pile foundation design considering negative skin friction effect.
Internatinal Journal of Geo-Engineering,
13, 11.
https://doi.org/10.1186/s40703-022-00176-5
Zhang, Y., Bienen, B., Cassidy, M. J., & Gourvenec, S. (2011). The undrained bearing capacity of a spudcan foundation under combined loading in soft clay.
Marine Structures,
24(4), 459-477.
https://doi.org/10.1016/j.marstruc.2011.06.002
Zheng, J., Hossain, M. S., & Wang, D. (2015). New design approach for spudcan penetration in nonuniform clay with an interbedded stiff layer.
Journal of Geotechnical and Geoenvironmental Engineering,
141(4), 04015003.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001282
Zhussupbekov, A., Sarsembayeva, A., Bazarov, B., & Omarov, A. (2024). Design of conical foundations with increased bearing capacity in areas of undermined soils.
Applied Sciences,
14(5), 1816.
https://doi.org/10.3390/app14051816