ASCE. (2022). Minimum design loads and associated criteria for buildings and other structures, American Society of Civil Engineers.
Charvet, I., Suppasri, A., Kimura, H., Sugawara, D., & Imamura, F. (2015). A multivariate generalized linear tsunami fragility model for Kesennuma city based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy.
Natural Hazards,
79, 2073-2099.
Como, A., & Mahmoud, H. (2013). Numerical evaluation of tsunami debris impact loading on wooden structural walls.
Engineering Structures,
56, 1249-261.
de Costa, R., Iwata, A., & Tanaka, N. (2019). Tsunami generated large wooden debris movement considering hybrid structures.
Journal of Japan Society of Civil Engineers, Ser. B1.
75(2), I_727-I_732.
https://doi.org/10.2208/jscejhe.75.2_I_727
Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists. 2: World Scientific Publishing Company.
Derschum, C., Nistor, I., Stolle, J., & Goseberg, N. (2018). Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry.
Coastal Engineering,
141, 24-35.
https://doi.org/10.1016/j.coastaleng.2018.08.01
Hwang, T., Kim, J., Lee, D. H., & Lee, J. C. (2023). Location tracking of drifting container by solitary wave load using a motion analysis program.
Journal of Ocean Engineering and Technology,
37(4), 158-163.
https://doi.org/10.26748/KSOE.2023.023
Hwang, T., Kim, T., Choi, S., Ko, C., & Lee, W. D. (2022). On applicability of LS-DYNA for collision analysis of drifting objects.
Journal of Coastal Disaster Prevention,
9(2), 133-143.
https://doi.org/10.20481/kscdp.2022.9.2.133
Hwang, T., Kim, T., Jin, H., Kim, Y., & Lee, W. D. (2024a). Drift behavior of containers caused by solitary wave inundation on wave absorbing revetment.
Journal of Coastal Disaster Prevention,
11(1), 11-20.
https://doi.org/10.20481/kscdp.2024.11.1.11
Hwang, T., Kim, T., Kim, J., Kim, Y., & Lee, W. D. (2024b). Effects of floating states on collision forces of drifting containers caused by solitary wave inundation.
Journal of Earthquake and Tsunami,
2450010,
https://doi.org/110.1142/S1793431124500106
Kharade, A. S., & Kapadiya, S. V. (2013). The impact analysis of RC structures under the influence of tsunami generated debris. International Journal of Engineering Research and Technology, 2(1), 1-10.
Kihara, N., & Kaida, H. (2019). Applicability of tracking simulations for probabilistic assessment of floating debris collision in tsunami inundation flow.
Coastal Engineering Journal,
62(1), 69-84.
Kim, T., Hwang, T., Baek, S., Hong, S., Kim, J., & Lee, W. D. (2023). Experimental investigations using computer vision for debris motion generated by solitary waves.
Journal of Earthquake and Tsunami,
17(4), 2350016.
https://doi.org/10.1142/S1793431123500161
Kimoto, E., & Tomita, N. (2021). Experimental study on the effect of initial setup angle of tsunami debris object on its motion.
Journal of Japan Society of Civil Engineers, Ser. B,
77(2), I_115-I_120.
Kosbab, B. D. (2010).
Seismic performance evaluation of port container cranes allowed to uplift. Georgia Institute of Technology:
http://hdl.handle.net/1853/33921
Krautwald, C., Stolle, J., Robertson, I., Achiari, H., Mikami, T., Nakamura, R., Takabatake, T., Nishida, Y., Shibayama, T., Esteban, M., Goseberg, N., & Nistor, I. (2021). Engineering lessons from september 28, 2018 Indonesian tsunami: Scouring mechanisms and effects on infrastructure.
Journal of Waterway, Port, Coastal, and Ocean Engineering,
147(2), 04020056.
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000620
Krautwald, C., Von Haefen, H., Niebuhr, P., Voegele, K., Schuerenkamp, D., Sieder, M., & Goseberg, N. (2022). Large-scale physical modeling of broken solitary waves impacting elevated coastal structures.
Coastal Engineering Journal,
64(1), 169-189.
https://doi.org/10.1080/21664250.2021.2023380
Lee, W. D., Choi, S., Kim, T., & Yeom, G.-S. (2022a). Comparison of solitary wave overtopping characteristics between vertical and wave absorbing revetments.
Ocean Engineering,
256, 111542.
https://doi.org/10.1016/j.oceaneng.2022.111542
Lee, W. D., Hwang, T., & Kim, T. (2022b). Inundation characteristics of solitary waves according to revetment type.
Water,
14(23), 3814.
https://doi.org/10.3390/w14233814
Lee, W. D., Lee, S. Y., Park, J. R., & Hwang, T. (2024). Collision characteristics according to contact conditions between drifting objects and Fixed Structures in the Coastal Zone.
Journnal of Coastal Research,
116(SI), 21-25.
https://doi.org/10.2112/JCR-SI116-005.1
Lee, W. D., Yeom, G. S., Kim, J., Lee, S., & Kim, T. (2022c). Runup characteristics of a tsunami-like wave on a slope beach.
Ocean Engineering,
256(1), 111897.
https://doi.org/10.1016/j.oceaneng.2022.111897
Miyokawa, E., Minakawa, Y., Nakamura, G., Okuda, Y., Ikesue, S., Hirai, T., & Toita, T. (2017). Study of the impact force of tsunami debris. Proceedings of the 24th Conference on Structural Mechanics in Reactor Technology, 25-27.
Naito, C., Cercone, C., Riggs, H. R., & Cox, D. (2014). Procedure for site assessment of the potential for tsunami debris impact.
Journal of Waterway, Port, Coastal, and Ocean Engineering,
140(2), 223-232.
https://doi.org/10.1061/(ASCE)WW.1943-5460.00002
Oda, Y., Honda, T., & Hashimoto, T. (2020). Experimental study on waterborne debris impact acting on tsunami seawall.
Doboku Gakkai Ronbunshu B2 Kaigan Kogaku (Online),
76(2), I.673-I.678.
https://doi.org/10.2208/kaigan.76.2_I_673
Palermo, D., Nistor, I., Saatcioglu, M., & Ghobarah, A. (2013). Impact and damage to structures during the 27 February 2010 Chile tsunami.
Canadian Journal of Civil Engineering,
40(8), 750-758.
https://doi.org/10.1139/cjce-2012-0553
Rossetto, T., Peiris, N., Pomonis, A., Wilkinson, S. M., Del Re, D., Koo, R., & Gallocher, S. (2007). The Indian Ocean tsunami of december 26, 2004: observations in Sri Lanka and Thailand.
Natural Hazards,
42, 105-124.
https://doi.org/10.1007/s11069-006-9064-3
Seo, M., Yeom, G. S., Lee, C., & Lee, W. D. (2022). Numerical analyses on the formation, propagation, and deformation of landslide tsunami using LS-DYNA and NWT.
Journal of Ocean Engineering and Technology,
36(1), 11-20.
https://doi.org/10.26748/KSOE.2021.089
Stolle, J. (2016). Experimental modelling of debris dynamics in tsunami-like flow conditions. [Doctoral dissertation, Université d’Ottawa/University of Ottawa.
Stolle, J., Krautwald, C., Robertson, I., Achiari, H., Mikami, T., Nakamura, R., Takabatake, T., Nishida, Y., Shibayama, T., Esteban, M., Nistor, I., & Goseberg, N. (2020). Engineering lessons from the 28 September 2018 Indonesian tsunami: Debris loading.
Canadian Journal of Civil Engineering,
47(1), 1-12.
https://doi.org/10.1139/cjce-2019-0049
Suppasri, A., Muhari, A., Ranasinghe, P., Mas, E., Shuto, N., Imamura, F., & Koshimura, S. (2012). Damage and reconstruction after the 2004 Indian Ocean tsunami and the 2011 Great East Japan tsunami.
Journal of Natural Disaster Science,
34(1), 19-39.
https://doi.org/10.2328/jnds.34.19
Tanaka, N., & Onai, A. (2017). Mitigation of destructive fluid force on buildings due to trapping of floating debris by coastal forest during the Great East Japan tsunami.
Landscape and Ecological Engineering,
13, 131-144.
https://doi.org/10.1007/s11355-016-0308-4
Yao, Y., Huang, Z., Lo, E. Y., & Shen, H. T. (2014). A preliminary laboratory study of motion of floating debris generated by solitary waves running up a beach.
Journal of Earthquake and Tsunami,
8(3), 1440006.
https://doi.org/10.1142/S1793431114400065