Bagherabadi, K. M., Skjong, S., Bruinsma, J., & Pedersen, E. (2022). System-level modeling of marine power plant with PEMFC system and battery.
International Journal of Naval Architecture and Ocean Engineering,
14, 100487.
https://doi.org/10.1016/j.ijnaoe.2022.100487
Cheng, X., Chen, L., Peng, C., Chen, Z., Zhang, Y., & Fan, Q. (2003). Catalyst microstructure examination of PEMFC membrane electrode assemblies vs. time.
Journal of the Electrochemical Society,
151(1), A48.
https://doi.org/10.1149/1.1625944
Chu, T., Wang, Q., Xie, M., Wang, B., Yang, D., Li, B., .Ming, P., & Zhang, C. (2022). Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test.
Energy,
258, 124747.
https://doi.org/10.1016/j.energy.2022.124747
Chung, C. G., Kim, L., Sung, Y. W., Lee, J., & Chung, J. S. (2009). Degradat ion mechanism of electrocatalyst during long-term operation of PEMFC.
International Journal of Hydrogen Energy,
34(21), 8974-8981.
https://doi.org/10.1016/j.ijhydene.2009.08.094
Cleghorn, SJ. C., Mayfield, D. K., Moore, D. A., Moore, J. C., Rusch, G., Sherman, T. W., Sherman, T. W., & Beuscher, U. (2006). A polymer electrolyte fuel cell life test: 3 years of continuous operation.
Journal of Power Sources,
158(1), 446-454.
https://doi.org/10.1016/j.jpowsour.2005.09.062
Elkafas, A. G., Rivarolo, M., Gadducci, E., Magistri, L., & Massardo, A. F. (2022). Fuel cell systems for maritime: a review of research development, commercial products, applications, and perspectives.
Processes,
11(1), 97.
https://doi.org/10.3390/pr11010097
Gadducci, E., Lamberti, T., Rivarolo, M., & Magistri, L. (2022). Experimental campaign and assessment of a complete 240-kW Proton Exchange Membrane Fuel Cell power system for maritime applications.
International Journal of Hydrogen Energy,
47(53), 22545-22558.
https://doi.org/10.1016/j.ijhydene.2022.05.061
Hassani, M., Rahgoshay, M., Rahimi-Esbo, M., & Dadashi Firouzjaei, K. (2020). Experimental study of oxidant effect on lifetime of PEM fuel cell.
Hydrogen, Fuel Cell & Energy Storage,
7(1), 33-43.
https://doi.org/10.22104/ijhfc.2020.4068.1202
Hou, K. H., Lin, C. H., Ger, M. D., Shiah, S. W., & Chou, H. M. (2012). Analysis of the characterization of water produced from proton exchange membrane fuel cell (PEMFC) under different operating thermal conditions.
International journal of hydrogen energy,
37(4), 3890-3896.
https://doi.org/10.1016/j.ijhydene.2011.05.129
International Electrotechnical Commission (IEC). (2017).
IEC Technical Specification 62282-7-1 Fuel cell technologies - Part 7-1: Test methods - Single cell performance tests for polymer electrolyte fuel cells (PEFC).
https://webstore.iec.ch/publication/31478
Lee, G. N., Kim, J. M., Jung, K. H., Park, H., Jang, H. S., Lee, C. S., & Lee, J. W. (2022). Environmental life-cycle assessment of eco-friendly alternative ship fuels (MGO, LNG, and hydrogen) for 170 GT nearshore ferry.
Journal of Marine Science and Engineering,
10(6), 755.
https://doi.org/10.3390/jmse10060755
Lee, G. Y., Jung, M. K., Ryoo, S. N., Park, M. S., Ha, S. C., & Kim, S. (2010). Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system.
International journal of hydrogen energy,
35(23), 13131-13136.
https://doi.org/10.1016/j.ijhydene.2010.04.081
Meng, K., Zhou, H., Chen, B., & Tu, Z. (2021). Dynamic current cycles effect on the degradation characteristic of a H
2/O
2 proton exchange membrane fuel cell.
Energy,
224, 120168.
https://doi.org/10.1016/j.energy.2021.120168
Oh, S., Lee, M., Lee, H., Kim, W., Park, J. W., & Park, K. (2018). Performance comparison between stationary PEMFC MEA and automobile MEA under pure hydrogen supply condition.
Korean Chemical Engineering Research,
56(4), 469. ‒473.
https://doi.org/10.9713/kcer.2018.56.4.469
Paperzh, K., Alekseenko, A., Pankov, I., & Guterman, V. (2024). Accelerated stress tests for Pt/C electrocatalysts: An approach to understanding the degradation mechanisms.
Journal of Electroanalytical Chemistry,
952, 117972.
https://doi.org/10.1016/j.jelechem.2023.117972
Park, S. K., & Choe, S. Y. (2008). Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects.
Journal of Power Sources,
179(2), 660-672.
https://doi.org/10.1016/j.jpowsour.2008.01.029
Saponaro, G., Stefanizzi, M., Torresi, M., & Camporeale, S. M. (2024). Analysis of the degradation of a Proton Exchange Membrane Fuel Cell for propulsion of a coastal vessel.
International Journal of Hydrogen Energy,
61, 803-819.
https://doi.org/10.1016/j.ijhydene.2024.02.349
Tian, P. (2020). Performance prediction of PEM fuel cell using artificial neural network machine learning. University of California: Irvine.
Wasterlain, S., Candusso, D., Hissel, D., Harel, F., Bergman, P., Menard, P., & Anwar, M. (2010). Study of temperature, air dew point temperature and reactant flow effects on PEMFC performances using electrochemical spectroscopy and voltammetry techniques.
Journal of Power Sources,
195(4), 984-984.
https://doi.org/10.1016/j.jpowsour.2009.08.084
Zhan, Y., Zhu, J., Guo, Y., & Wang, H. (2008) October. Performance analysis and improvement of a proton exchange membrane fuel cell using comprehensive intelligent control. 2008 international conference on electrical machines and systems. p 23782383 IEEE.
Zuo, J., Lv, H., Zhou, D., Xue, Q., Jin, L., Zhou, W., Yang, D., & Zhang, C. (2021). Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application.
Applied Energy,
281, 115937.
https://doi.org/10.1016/j.apenergy.2020.115937