Al Ghafri, S. Z., Swanger, A., Jusko, V., Siahvasho, A., Perez, F., Johns, M. L., & May, E. F. (2022). Modelling of liquid hydrogen boil-off.
Energies,
15(3), 1149.
https://doi.org/10.3390/en15031149
Aspelund, A., Mølnvik, M. J., & De Koeijer, G. (2006). Ship transport of CO
2: Technical solutions and analysis of costs, energy utilization, exergy efficiency and CO
2 emissions.
Chemical Engineering Research and Design,
84(9), 847-855.
https://oi.org/10.1205/cherd.5147
Cheon, B. H., Bang, K. J., Ki, H. G., Han, S. K., Hwang, Y. S., & Park, S. G. (2023). The development of a vertically asymmetric bi-lobe tank for large-scale LCO2 carrier. 33rd International Ocean and Polar Engineering Conference. (ISOPE-I-23 503) ISOPE.
Clark, D. E., Oelkers, E. H., Gunnarsson, I., Sigfússon, B., Snæbjörnsdóttir, S. Ó., Aradottir, E. S., & Gíslason, S. R. (2020). CarbFix2: CO
2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 C.
Geochimica et Cosmochimica Acta,
279, 45-66.
https://doi.org/10.1016/j.gca.2020.03.039
Hastings, L. J., Flachbart, R. H., Martin, J. J., Hedayat, A., Fazah, M., Lak, T., Nguyen, H., & Bailey, J. W. (2003). Spray bar zero-gravity vent system for on-orbit liquid hydrogen storage. (No NASA/TM-2003-212926)..
Holman, J. P. (2002). Heat transfer. 9th ed McGraw-Hill.
Jung, J., & Seo, Y. (2022). Onboard CO
2 capture process design using rigorous rate-based model.
Journal of Ocean Engineering and Technology,
36(3), 168-180.
https://doi.org/10.26748/KSOE.2022.006
Jusko, V., Al Ghafri, S.Z.S., & May, E. F. (2021). Fluid Sciences and Resources Division. (BoilFAST v1.1.0). The University of Western Australia: Perth, Australia.
Kartuzova, O. V., Kassemi, M., Moder, J. P., & Agui, J. H. (2014). Self-pressurization and spray cooling simulations of the multipurpose hydrogen test bed (MHTB) ground-based experiment.
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. (AIAA 2014-3578).
https://doi.org/10.2514/6.2014-3578
Kearns, D., Liu, H., & Consoli, C. (2021). Technology readiness and costs of CCS. Global CCS institute: p 3.
Kim, S., Lee, J. G., Kim, S., Heo, J., Bang, C. S., Lee, D. K., Lee, H., Park, G., Lee, D. Y., & Lim, Y. (2024). Experiment and simulation of LNG self-pressurization considering temperature distribution under varying liquid lecel.
Energy,
290, 130071.
https://doi.org/10.1016/j.energy.2023.130071
Lee, J., Son, H., Oh, J., Yu, T., Kim, H., & Lim, Y. (2024). Advanced process design of subcooling re-liquefaction system considering storage pressure for a liquefied CO
2 carrier.
Energy,
293, 130556.
https://doi.org/10.1016/j.energy.2024.130556
Matveev, K. I., & Leachman, J. W. (2023). The effect of liquid hydrogen tank size on self-pressurization and constant-pressure venting.
Hydrogen,
4(3), 444-455.
https://doi.org/10.3390/hydrogen4030030
Nellis, G., & Klein, S. (2009). Heat transfer. Cambridge University Press.
Peng, J. K., & Ahluwalia, R. K. (2013). Enhanced dormancy due to para-to-ortho hydrogen conversion on onsulated cryogenic pressure vessels for automotive applications.
International journal of hydrogen energy,
38(31), 13664-13672.
https://doi.org/10.1016/j.ijhydene.2013.08.039
Rotenberg, Y. (1986). Numerical simulation of self pressurization in a small cryogenic tank.
Advances in Cryogenic Enfinerring.
31: p 963-971 Bostion, MA. Speinger US.
Wang, H. R., Wang, B., Pan, Q. W., Wu, Y. Z., Jiang, L., Wang, Z. H., & Gan, Z. H. (2022). Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks.
International Journal of Hydrogen Energy,
47(71), 30530-30545.
https://doi.org/10.1016/j.ijhydene.2022.07.027
Yoo, B. Y. (2011).
An experimental study on the thermocline layer in a cargo tank of CO2carriers. [Doctoral dissertation, Seoul National University;
https://www.riss.kr/link?idT12406961
Yoo, B. Y., Choi, D. K., Kim, H. J., Moon, Y. S., Na, H. S., & Lee, S. G. (2013). Development of CO
2 terminal and CO
2 carrier for future commercialized CCS market.
International Journal of Greenhouse Gas Control,
12, 323-332.
https://doi.org/10.1016/j.ijggc.2012.11.008
Zhu, S., Li, Y., Zhi, X., Gu, C., Tang, Y., & Qiu, L. (2020). Numerical analysis of nitrogen condensation heat transfer enhancement with liquid film fluctuation at cryogenic temperature.
International Journal of Heat and Mass Transfer,
149, 119151.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119151