Abdel-Aziz, Y. I., & Karara, H. M. (2015). Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry.
Photogrammetric Engineering & Remote Sensing,
81(2), 103-107.
https://doi.org/10.14358/PERS.81.2.103
Ahmed, N., Howlader, N., Hoque, M. A. A., & Pradhan, B. (2021). Coastal erosion vulnerability assessment along the eastern coast of Bangladesh using geospatial techniques.
Ocean and Coastal Management,
199, 105408.
https://doi.org/10.1016/j.ocecoaman.2020.105408
Angnuureng, D. B., Jayson-Quashigah, P. N., Almar, R., Stieglitz, T. C., Anthony, E. J., Aheto, D. W., & Addo, K. A. (2020). Application of shore-based video and unmanned aerial vehicles (Drones): Complementary tools for beach studies.
Remote Sensing,
12(3), 394.
https://doi.org/10.3390/rs12030394
Chen, W. W., & Chang, H. K. (2009). Estimation of shoreline position and change from satellite images considering tidal variation.
Estuarine, Coastal and Shelf Science,
84(1), 54-60.
https://doi.org/10.1016/J.ECSS.2009.06.002
Dang, K. B., Dang, V. B., Ngo, V. L., Vu, K. C., Nguyen, H., Nguyen, D. A., Nguyen, TD. L., Pham, T. P. N., Giang, T. L., Nguyen, H. D., & Hieu Do, T. (2022). Application of deep learning models to detect coastlines and shorelines.
Journal of Environmental Management,
320, 115732.
https://doi.org/10.1016/j.jenvman.2022.115732
El-Ashmawy, K. L. A. (2018). Using direct linear transformation (DLT) method for aerial photogrammetry applications.
Geodesy and Cartography,
44(3), 71-79.
https://doi.org/10.3846/gac.2018.1629
Fetić, A., Jurić, D., & Osmanković, D. (2012). The procedure of a camera calibration using Camera Calibration Toolbox for MATLAB. 2012 Proceedings of the 35th International Convention MIPRO. p 1752-1757 IEEE.
Hagenaars, G., de Vries, S., Luijendijk, A. P., de Boer, W. P., & Reniers, A. J. H. M. (2018). On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment.
Coastal Engineering,
133, 113-125.
https://doi.org/10.1016/j.coastaleng.2017.12.011
Holland, K. T., Holman, R. A., Lippmann, T. C., Stanley, J., & Plant, N. (1997). Practical Use of Video Imagery in Nearshore Oceanographic Field Studies.
IEEE Journal of Oceanic Engineering,
22(1), 81-92.
https://doi.org/10.1109/48.557542
Kang, T.-S., Kim, J.-B., Kim, G.-Y., Kim, J.-K., & Hwang, C.-S. (2017). Variation characteristics of Haeundae Beach using video image.
Journal of Ocean Engineering and Technology,
31(1), 60-68.
https://doi.org/10.5574/KSOE.2017.31.1.060
Kim, J., Kim, J., Kim, T., Huh, D., & Caires, S. (2020). Wave-tracking in the surf zone using coastal video imagery with deep neural networks.
Atmosphere,
11(3), 304.
https://doi.org/10.3390/atmos11030304
Lee, J.-M., Park, J.-Y., & Choi, J.-Y. (2013). Evaluation of sub-aerial topographic surveying techniques using total station and RTK-GPS for applications in macrotidal sand beach environment.
Journal of Coastal Research,
65(sp1), 535-540.
https://doi.org/10.2112/si65-091.1
Luppichini, M., Bini, M., Paterni, M., Berton, A., & Merlino, S. (2020). A new beach topography-based method for shoreline identification.
Water,
12(11), 3110.
https://doi.org/10.3390/w12113110
McAllister, E., Payo, A., Novellino, A., Dolphin, T., & Medina-Lopez, E. (2022). Multispectral satellite imagery and machine learning for the extraction of shoreline indicators.
Coastal Engineering,
174, 104102.
https://doi.org/10.1016/J.COASTALENG.2022.104102
Morton, R. A., Leach, M. P., Paine, J. G., & Cardoza, M. A. (1993). Monitoring beach changes using GPS surveying techniques. Journal of Coastal Research, 9(3), 702-720.
Rangel-Buitrago, N., Williams, A. T., & Anfuso, G. (2018). Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls.
Ocean & Coastal Management,
156, 58-75.
https://doi.org/10.1016/j.ocecoaman.2017.04.006
Ribas, F., Simarro, G., Arriaga, J., & Luque, P. (2020). Automatic shoreline detection from video images by combining information from different methods.
Remote Sensing,
12(22), 3717.
https://doi.org/10.3390/rs12223717
Santos, C. J., Andriolo, U., & Ferreira, J. C. (2020). Shoreline response to a sandy nourishment in a wave-dominated coast using video monitoring.
Water,
12(6), 1632.
https://doi.org/10.3390/W12061632
Simarro, G., Bryan, K. R., Guedes, R. M. C., Sancho, A., Guillen, J., & Coco, G. (2015). On the use of variance images for runup and shoreline detection.
Coastal Engineering,
99, 136-147.
https://doi.org/10.1016/j.coastaleng.2015.03.002
Simarro, G., Calvete, D., Souto, P., & Guillén, J. (2020). Camera calibration for coastal monitoring using available snapshot images.
Remote Sensing,
12(11), 1840.
https://doi.org/10.3390/rs12111840
Surisetty, V. V. A. K., Venkateswarlu, C., Ramesh, M., Gireesh, B., Naidu, C. V., Sheela Nair, L., & Sharma, R. (2023). Practical use of smartphone cameras in rip current monitoring studies.
Ocean & Coastal Management,
243, 106776.
https://doi.org/10.1016/j.ocecoaman.2023.106776
Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., & Turner, I. L. (2019). Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery.
Coastal Engineering,
150, 160-174.
https://doi.org/10.1016/J.COASTALENG.2019.04.004
Zanutta, A., Lambertini, A., & Vittuari, L. (2020). UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes.
Journal of Marine Science and Engineering,
8(1), 52.
https://doi.org/10.3390/JMSE8010052