Cho, J. H., Kim, J. S., Lim, J. S., Kim, S., & Kim, Y. S. (2007). Optimal acoustic search path planning for sonar system based on genetic algorithm. International Journal of Offshore and Polar Engineering, 17(03.
Dong, W. S., Wang, P. Y., Yin, W. T., Shi, G. M., Wu, F. F., & Lu, X. (2018). Denoising prior driven deep neural network for image restoration.
IEEE transactions on pattern analysis and machine intelligence,
41(10), 2305-2318.
https://doi.org/10.1109/TPAMI.2018.2873610
Frost, V. S., Stiles, J. A., Shanmugan, K. S., & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-4(2), 157-166.
https://doi.org/10.1109/TPAMI.1982.4767223
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2), 100-107.
https://doi.org/10.1109/TSSC.1968.300136
Jiang, Y., Peng, P., Wang, L., Wang, J., Wu, J., & Liu, Y. (2023). LiDAR-based local path planning method for reactive navigation in underground mines.
Remote Sensing,
15(2), 309.
https://doi.org/10.3390/rs15020309
Kim, J., Song, S., & Yu, S. (2017). Denoising auto-encoder based image enhancement for high resolution sonar image.
2017 IEEE Underwater Technology (UT), Busan, Korea,
https://doi.org/10.1109/UT.2017.7890316
Kim, B., Sung, M., Lee, M., Cho, H., & Yu, S. C. (2020). Imaging sonar based AUV localization and 3D mapping using image sequences.
Global Oceans 2020: Singapore – US Gulf Coast, Biloxi, MS, USA, 1-6.
https://doi.org/10.1109/IEEECONF38699.2020.9389469
Kim, M. H., Yoo, T., Park, S. J., & Oh, K. (2023). Forward-looking sonar-based stream function algorithm for obstacle avoidance in autonomous underwater vehicles.
Journal of Marine Science and Engineering,
11(10), 1998.
https://doi.org/10.3390/jmse11101998
Kot, R., Szymak, P., Piskur, P., & Naus, K. (2024). A comparative study of different collision avoidance systems with local path planning for autonomous underwater vehicles.
IEEE Access,
12, 61443-61466.
https://doi.org/10.1109/ACCESS.2024.3394569
Liang, X. X., Liu, C. Y., Song, X. L., & Zhang, Y. K. (2018). Research on improved artificial potential field approach in local path planning for mobile robot. Computer Simulation, 35(4), 291-361.
Li, T. T., Tang, S. F., Wang, F., Tong, M. M., & Xu, C. L. (2018). Image enhancement study based on adaptive median filtering with secondary noise detection and neighborhood pixel recovery.
2018 International Conference on Robots & Intelligent System (ICRIS), Changsha, China, 134-136.
https://doi.org/10.1109/ICRIS.2018.00042
Li, J. H., Park, D., & Ki, G. (2019). Autonomous swimming technology for an AUV operating in the underwater jacket structure environment.
International Journal of Naval Architecture and Ocean Engineering,
11(2), 679-687.
https://doi.org/10.1016/j.ijnaoe.2019.02.002
Li, J. H., Kang, H., Kim, M. G., Lee, M. J., Cho, G. R., & Jin, H. S. (2022). Adaptive formation control of multiple underactuated autonomous underwater vehicles.
Journal of Marine Science and Engineering,
10(9), 1233.
https://doi.org/10.3390/jmse10091233
McConnell, J., & Englot, B. (2021). Predictive 3D sonar mapping of underwater environments via object-specific Bayesian inference.
2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 6761-6767.
https://.org/10.1109/ICRA48506.2021.9560737
Mbouombouo Mboungam, A. H., Zhi, Y., & Youani, W. A. T. (2023). Moving target detection using CA, SO and GO-CFAR detectors in nonhomogeneous environment.
Applied Mathematics and Sciences: An International Journal (MathSJ), 7th International Conference on Applied Mathematics and Sciences,
https://.org/10.2139/ssrn.4453254
Park, M. G., & Lee, M. C. (2003). A new technique to escape local minimum in artificial potential field based path planning.
KSME International Journal,
17, 1876-1885.
https://doi.org/10.1007/BF02982426
Paull, L., Saeedi, S., Li, H., & Myers, V. (2010). An information gain based adaptive path planning method for an autonomous underwater vehicle using sidescan sonar.
2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, 835-840.
https://doi.org/10.1109/COASE.2010.5584478
Petillot, Y., Tena Ruiz, I., & Lane, D. M. (2001). Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar.
IEEE Journal of Oceanic Engineering,
26(2), 240-251.
https://doi.org/10.1109/48.922790
Ritcey, J. A., & Hines, J. L. (1991). Performance of MAX family of order-statistic CFAR detectors.
IEEE Transactions on Aerospace and Electronic Systems,
27(1), 48-57.
https://doi.org/10.1109/7.68147
Rostami, SM. H., Sangaiah, A. K., Wang, J., & Liu, X. (2019). Obstacle avoidance of mobile robots using modified artificial potential field algorithm.
Journal of Wireless Communications and Networking,
2019, 70.
https://doi.org/10.1186/s13638-019-1396-2
Shen, Y., Liu, Q., Lou, S. Q., & Hou, Y. L. (2017). Wavelet-based total variation and nonlocal similarity model for image denoising.
IEEE Signal Processing Letters,
24(6), 877-881.
https://doi.org/10.1109/LSP.2017.2688707
Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press.
Weber, T. C. (2021). A CFAR detection approach for identifying gas bubble seeps with multi-beam echo sounders.
IEEE Journal of Oceanic Engineering,
46(4), 1346-1355.
https://doi.org/10.1109/JOE.2021.3056910
Yang, X., Yang, W., Zhang, H. J., Chang, H., Chen, C. Y., & Zhang, S. (2016). A new method for robot path planning based artificial potential field.
Proceedings of the IEEE 11th Conference on Industrial Electronics and Applications Hefei, China, 1294-1299.
https://doi.org/10.1109/ICIEA.2016.7603784
Yuki, K., Yoshihiro, M., & Norishige, F. (2018). Parallelized and vectorized implementation of DCT denoising with FMA instructions.
2018 International Workshop on Advanced Image Technology (IWAIT) Chiang Mai, Thailand,
https://doi.org/10.1109/IWAIT.2018.8369754
Yu, X., Luo, Y., & Liu, Y. (2023). A novel adaptive two-stage approach to dynamic optimal path planning of UAV in 3-D unknown environments.
Multimedia Tools and Applications,
82, 18761-18779.
https://doi.org/10.1007/s11042-022-14254-4
Zhang, J. C., Luo, H. B., Liang, R. G., Zhou, W., Hui, B., & Chang, Z. (2017). PCA-based denoising method for division of focal plane polarimeters.
Optical Express,
25(3), 2391-2400.
https://doi.org/10.1364/OE.25.002391