Allen, C., Viselli, A., Goupee, D. A. H., Gaertner, E., Abbas, N., Hall, M., & Barter, G. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-megawatt offshore reference wind turbine technical report.
http://www.nrel.gov/publications
API. (2008). API Recommended Practice 2SK. Design and analysis of stationkeeping systems for floating offshore structures, 3rd ed.
DNV GL. (2021a). Position Mooring, (DNVGL-OS-E301)..
DNV GL. (2021b). Design of Offshore Wind Turbine Structures, (DNVGL-OS-J101)..
DNV GL. (2021c). Environmental conditions and environmental loads, Norway (DNVGL-RP-C205)..
Eurek, K., Sullivan, P., Gleason, M., Hettinger, D., Heimiller, D., & Lopez, A. (2017). An improved global wind resource estimate for integrated assessment models.
Energy Economics,
64, 552-567.
https://doi.org/10.1016/j.eneco.2016.11.015
European Commission. (2015).
Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50 m,
https://doi.org/10.3030/640741
European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A hydrogen strategy for a climate-neutral Europe.
Heo, K., Park, H., Yuck, R.-H., & Lee, D. (2023). Numerical investigation of a floating-type support structure (Tri-Star floater) for 9.5 MW wind turbine generators.
Energies,
16(24), 7961.
https://doi.org/10.3390/en16247961
Ibrahim, R. L., Huang, Y., Mohammed, A., & Adebayo, T. S. (2023). Natural resources-sustainable environment conflicts amidst COP26 resolutions: Investigating the role of renewable energy, technology innovations, green finance, and structural change.
International Journal of Sustainable Development and World Ecology,
30(4), 445-457.
https://doi.org/10.1080/13504509.2022.2162147
International Electrotechnical Commission (IEC). (2019).
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines. (IEC TS 61400-3-2:2019).
https://webstore.iec.ch/publication/29244
Jin, C., Lee, I., Park, J., & Kim, M. (2023). Dynamic behavior assessment of OC4 semi-submersible FOWT platform through Morison equation.
Journal of Ocean Engineering and Technology,
37(6), 238-246.
https://doi.org/10.26748/KSOE.2023.030
Lee, K., Kim, H.-S., & Kim, B. W. (2023). A study on the global motion performance of floater and mooring due to arrangement of detachable mooring system.
Journal of Wind Energy,
14(2), 26- 33.
https://doi.org/10.33519/KWEA.2023.14.2.003
Li, X., Ji, H., Zhang, B., Liu, T., & Ye, W. (2016). Design of flexible riser for FPSO in South China Sea. Proceedings of the 26th International Ocean and Polar Engineering Conference, 109-116.
Martinez-Luengo, M., Kolios, A., & Wang, L. (2017). Parametric FEA modelling of offshore wind turbine support structures: Towards scaling-up and CAPEX reduction.
International Journal of Marine Energy,
19, 16-31.
https://doi.org/10.1016/j.ijome.2017.05.005
Niranjan, R., & Ramisetti, S. B. (2022). Insights from detailed numerical investigation of 15 MW offshore semi-submersible wind turbine using aero-hydro-servo-elastic code.
Ocean Engineering,
251, 111024.
https://doi.org/10.1016/j.oceaneng.2022.111024
Pham, T. Q. M., Im, S., & Choung, J. (2021). Prospects and economics of Offshore wind turbine systems.
Journal of Ocean Engineering and Technology,
35(5), 382-392.
https://doi.org/10.26748/KSOE.2021.061
Pillai, A. C., Gordelier, T. J., Thies, P. R., Dormenval, C., Wray, B., Parkinson, R., & Johanning, L. (2022). Anchor loads for shallow water mooring of a 15 MW floating wind turbine ― Part I: Chain catenary moorings for single and shared anchor scenarios.
Ocean Engineering,
266, 111816.
https://doi.org/10.1016/j.oceaneng.2022.111816
Rentschler, M. U. T., Adam, F., & Chainho, P. (2019). Design optimization of dynamic inter-array cable systems for floating offshore wind turbines.
Renewable and Sustainable Energy Reviews,
111, 622-635.
https://doi.org/10.1016/J.RSER.2019.05.024
Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen.
International Journal of Hydrogen Energy,
46(41), 21261- 21273.
https://doi.org/10.1016/J.IJHYDENE.2021.04.016