American Petroleum Institute (API). (2000). API 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design, American Petroleum Institute.
Amzallag, C., Gerey, J. P., Robert, J. L., & Bahuaud, J. (1994). Standardization of the rainflow counting method for fatigue analysis.
International journal of fatigue,
16(4), 287-293.
https://doi.org/10.1016/0142-1123(94)90343-3
Andersen, L. V., Vahdatirad, M. J., Sichani, M. T., & Sørensen, J. D. (2012). Natural frequencies of wind turbines on monopile foundations in clayey soils—A probabilistic approach.
Computers and Geotechnics,
43, 1-11.
https://doi.org/10.1016/j.compgeo.2012.01.010
Barthelmie, R. J., Courtney, M. S., Højstrup, J., & Larsen, S. E. (1996). Meteorological aspects of offshore wind energy: Observations from the Vindeby wind farm.
Journal of Wind Engineering and Industrial Aerodynamics,
62(2–3), 191-211.
https://doi.org/10.1016/S0167-6105(96)00077-3
Bekken, L. (2009). Lateral behavior of large diameter offshore monopile foundations for wind turbines.
Bendat, J. S. (1964). Probability functions for random responses: prediction of peaks, fatigue damage, and catastrophic.
Bisoi, S., & Haldar, S. (2014). Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction.
Soil Dynamics and Earthquake Engineering,
63, 19-35.
https://doi.org/10.1016/j.soildyn.2014.03.006
Byrne, B. W., & Houlsby, G. T. (2003). Foundations for offshore wind turbines.
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
361(1813), 2909-2930.
https://doi.org/10.1098/rsta.2003.1286
Chen, D., Gao, P., Huang, S., Li, C., & Yu, X. (2020). Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines.
Marine Structures,
71, 102727.
https://doi.org/10.1016/j.marstruc.2020.102727
Chen, I. W., Wong, B. L., Lin, Y. H., Chau, S. W., & Huang, H. H. (2016). Design and analysis of jacket substructures for offshore wind turbines.
Energies,
9(4), 264.
https://doi.org/10.3390/en9040264
Dirlik, T. (1985). Application of computers in fatigue analysis. (Doctoral dissertation, University of Warwick).
DNV. (2016). Fatigue design of offshore steel structures, (DNVGL-RP-C203). Norwegian University of Science and Technology. Veritas As, Offshore Standard DNV-OS-j101.
Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis.
Guan, D. W., Xie, Y. X., Yao, Z. S., Chiew, Y. M., Zhang, J. S., & Zheng, J. H. (2022). Local scour at offshore windfarm monopile foundations: A review.
Water Science and Engineering,
15(1), 29-39.
https://doi.org/10.1016/j.wse.2021.12.006
Guo, Y., Wang, H., & Lian, J. (2022). Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends.
Energy Conversion and Management,
255, 115319.
https://doi.org/10.1016/j.enconman.2022.115319
Esteban, M. D., López-Gutiérrez, J. S., & Negro, V. (2019). Gravity-based foundations in the offshore wind sector.
Journal of Marine Science and Engineering,
7(3), 64.
https://doi.org/10.3390/jmse7030064
Esteban, M. D., Couñago, B., López-Gutiérrez, J. S., Negro, V., & Vellisco, F. (2015). Gravity based support structures for offshore wind turbine generators: Review of the installation process.
Ocean Engineering,
110(Part A), 281-291.
https://doi.org/10.1016/j.oceaneng.2015.10.033
Hearn, E. N., & Edgers, L. (2010). Finite element analysis of an offshore wind turbine monopile.
GeoFlorida 2010: Advances in Analysis, Modeling & Design, 1857-1865.
https://doi.org/10.1061/41095(365)188
Jeanjean, P. (2009) May. Re-assessment of P-Y curves for soft clays from centrifuge testing and finite element modeling.
In Offshore technology conference. (pp. OTC-20158), OTC.
https://doi.org/10.4043/20158-MS
Kaveh, A., & Sabeti, S. (2018). Optimal design of jacket supporting structures for offshore wind turbines using CBO and ECBO algorithms.
Periodica Polytechnica Civil Engineering,
62(3), 545-554.
https://doi.org/10.3311/PPci.11651
Larsen, J. H., Soerensen, H. C., Christiansen, E., Naef, S., & Vølund, P. (2005) October. Experiences from Middelgrunden 40 MW offshore wind farm. Copenhagen offshore wind conference. p 1-8 Denmark. Copenhagen.
Liu, H., Diambra, A., Abell, J. A., & Pisanò, F. (2020). Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading.
Journal of Geotechnical and Geoenvironmental Engineering,
146(11), 04020122.
https://doi.org/10.1061/(ASCE)GT.1943-5606.000236
Lu, F., Long, K., Zhang, C., Zhang, J., & Tao, T. (2023). A novel design of the offshore wind turbine tripod structure using topology optimization methodology.
Ocean Engineering,
280, 114607.
https://doi.org/10.1016/j.oceaneng.2023.114607
Li, L., Zheng, M., Liu, X., Wu, W., Liu, H., El Naggar, M. H., & Jiang, G. (2022). Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation.
Computers and Geotechnics,
144, 104635.
https://doi.org/10.1016/j.compgeo.2022.104635
Liu, H. Y., & Kaynia, A. M. (2022). Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu.
Water Science and Engineering,
15(1), 69-77.
https://doi.org/10.1016/j.wse.2021.12.001
Lombardi, D., Bhattacharya, S., & Wood, D. M. (2013). Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil.
Soil Dynamics and Earthquake Engineering,
49, 165-180.
https://doi.org/10.1016/j.soildyn.2013.01.015
Lu, F., Long, K., Diaeldin, Y., Saeed, A., Zhang, J., & Tao, T. (2023). A time-domain fatigue damage assessment approach for the tripod structure of offshore wind turbines.
Sustainable Energy Technologies and Assessments,
60, 103450.
https://doi.org/10.1016/j.seta.2023.103450
Ma, H., Yang, J., & Chen, L. (2018). Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation.
Applied Ocean Research,
73, 179-189.
https://doi.org/10.1016/j.apor.2018.02.007
Marjan, A., & Hart, P. (2022). Impact of Design Parameters on the Dynamic Response and Fatigue of Offshore Jacket Foundations.
Journal of Marine Science and Engineering,
10(9), 1320.
https://doi.org/10.3390/jmse10091320
Mathern, A., von der Haar, C., & Marx, S. (2021). Concrete support structures for offshore wind turbines: Current status, challenges, and future trends.
Energies,
14(7), 1995.
https://doi.org/10.3390/en14071995
Mengé, P., & Gunst, N. (2008). Gravity based foundations for the wind turbines on Thorntonback–Belgium. 15de Innovatieforum Geotechniek. Antwerpen, Belgium.
Oh, K. Y., Nam, W., Ryu, M. S., Kim, J. Y., & Epureanu, B. I. (2018). A review of foundations of offshore wind energy convertors: Current status and future perspectives.
Renewable and Sustainable Energy Reviews,
88, 16-36.
https://doi.org/10.1016/j.rser.2018.02.005
Park, M., Park, S. G., Seong, B. C., Choi, Y. J., & Jung, S. H. (2021). Current status and prospective of offshore wind power to achieve Korean renewable energy 3020 plan.
Journal of Korean Society of Environmental Engineers,
43(3), 196-205.
Saleem, Z. (2011). Alternatives and modifications of monopile foundation or its installation technique for noise mitigation. TUDelft Report. TUDelft University.
Shi, W., Park, H., Chung, C., Baek, J., Kim, Y., & Kim, C. (2013). Load analysis and comparison of different jacket foundations.
Renewable Energy,
54, 201-210.
https://doi.org/10.1016/j.renene.2012.08.008
Tian, X., Sun, X., Liu, G., Deng, W., Wang, H., Li, Z., & Li, D. (2022). Optimization design of the jacket support structure for offshore wind turbine using topology optimization method.
Ocean Engineering,
243, 110084.
https://doi.org/10.1016/j.oceaneng.2021.110084
Tian, X., Liu, G., Deng, W., Xie, Y., & Wang, H. (2024). Fatigue constrained topology optimization for the jacket support structure of offshore wind turbine under the dynamic load.
Applied Ocean Research,
142, 103812.
https://doi.org/10.1016/j.apor.2023.103812
Winkler, E. (1867). Die Lehre von Elastizitat und Festigkeit. [The theory of elasticity and stiffness] H. Domenicus: Prague.
Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines.
Energy conversion and management,
158, 103-119.
https://doi.org/10.1016/j.enconman.2017.12.061
Wang, X., Yang, X., & Zeng, X. (2017a). Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand.
Ocean Engineering,
139, 140-151.
https://doi.org/10.1016/j.oceaneng.2017.04.046
Liu, H., & Kaynia, A. M. (2022). Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu.
Water Science and Engineering,
15(1), 69-77.
https://doi.org/10.1016/j.wse.2021.12.001
Zaayer, M. B. (2002). Foundation models for the dynamic response of offshore wind turbines. Proceedings of the international conference on marine renewable energy, Newcastle, UK. p 111-117 Institute of Marine Engineering, Science and Technology.
Zhang, F., Chen, X., Yan, J., & Gao, X. (2023). Countermeasures for local scour around offshore wind turbine monopile foundations: A review.
Applied Ocean Research,
141, 103764.
https://doi.org/10.1016/j.apor.2023.103764