Amara, I., Miled, W., Slama, R. B., & Ladhari, N. (2018). Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.
Environ Toxicol Pharmacol,
57, 115-130.
https://doi.org/10.1016/j.etap.2017.12.001
Bailey, R. A. (2008). Design of comparative experiments. Cambridge University Press: ISBN 978-0-521-68357-9..
Beech, B. (2004). Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study.
International Biodeterioration & Biodegradation,
53(3), 177-183.
https://doi.org/10.1016/S0964-8305(03)00092-1
Cámara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R., Richardson, M. C., Slater-Jefferies, J., Steventon, K., & Webb, J. S. (2022). Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge.
npj Biofilms and Microbiomes,
8, 42.
https://doi.org/10.1038/s41522-022-00306-y
Czermański, E., Oniszczuk-Jastrząbek, A., Spangenberg, E. F., Kozłowski, Ł., Adamowicz, M., Jankiewicz, J., & Cirella, G. T. (2022). Implementation of the energy efficiency existing ship index: An important but costly step towards ocean protection.
Marine Policy,
145, 105259.
Del Pozo, J. L., Rouse, M. S., & Patel, R. (2008). Bioelectric Effect and Bacterial Biofilms. a Systematic Review.
The International journal of artificial organs,
31(9), 786-795.
https://doi.org/10.1177/03913988080310090
Ehrlich, G. D., Stoodley, P., Kathju, S., Zhao, Y., McLeod, B. R., Balaban, N., Hu, F. Z., Sotereanos, N. G., Costerton, J. W., Stewart, P. S., Post, J. C., & Lin, Q. (2005). Engineering approaches for the detection and control of orthopaedic biofilm infections.
Clinical orthopaedics and related research,
437, 59-66.
https://doi.org/10.1097/00003086-200508000-00011
First, M. R., Riley, S. C., Islam, K. A., Hill, V., Li, J., Zimmernan, R. C., & Drake, L. A. (2021). Rapid quantification of biofouling with an inexpensive, underwater camera and image analysis.
Management of Biological Invasions,
12(3), 599-617.
https://doi.org/10.3391/mbi.2021.12.3.06
Freebairn, D., Linton, D., Harkin-Jones, E., Jones, D. S., Gilmore, B. F., & Gorman, S. P. (2013). Electrical methods of controlling bacterial adhesion and biofilm on device surfaces.
Expert Review of Medical Devices,
10(1), 85-103.
https://doi.org/10.1586/erd.12.70
Gizer, G., Onal, U., Ram, M., & Sahiner, N. (2023). Biofouling and mitigation methods: A review.
Biointerface Research in Applied Chemistry,
13(2), 185.
https://doi.org/10.33263/BRIAC132.185
Huiszoon, R. C., Subramanian, S., Rajasekaran, P. R., Beardslee, L. A., Bentley, W. E., & Ghodssi, R. (2019). Flexible platform for in situ impedimetric detection and bioelectric effect treatment of escherichia coli biofilms.
IEEE Transactions on Biomedical Engineering,
66(5), 1337-1345.
https://doi.org/10.1109/TBME.20182872896
Kim, Y. W., Sardari, S. E., Meyer, M. T., Iliadis, A. A., Wu, H. C., Bentley, W. E., & Ghodssi, R. (2012). An ALD aluminum oxide passivated surface acoustic wave sensor for early biofilm detection.
Sensors and Actuators B: Chemical,
163(1), 136-145.
https://doi.org/10.1016/j.snb.2012.01.021
Kim, Y. W., Subramanian, S., Gerasopoulos, K., Ben-Yoav, H., Wu, H. C., Quan, D., Carter, K., Meyer, M. T., Bentley, W. E., & Ghodssi, R. (2015). Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect.
npj Biofilms Microbiomes.
1: 15016.
https://doi.org/10.1038/npjbiofilms.201516
Kim, Y. W., Meyer, M. T., Berkovich, A., Subramanian, S., Iliadis, A. A., Bentley, W. E., & Ghodssi, R. (2016). A surface acoustic wave biofilm sensor integrated with a treatment method based on the bioelectric effect.
Sensors and Actuators A: Physical,
238, 140-149.
Kim, Y. W., Lee, J., Lee, T. H., & Lim, S. (2022). Bioelectric effect utilized a healthcare device for effective management of dental biofilms and gingivitis.
Medical Engineering & Physics,
104, 103804.
https://doi.org/10.1016/j.medengphy.2022.103804
Molnar, J. L., Gamboa, R. L., Revenga, C., & Spalding, M. D. (2008). Assessing the global threat of invasive species to marine biodiversity.
Frontiers in Ecology and the Environment,
6(9), 485-492.
https://doi.org/10.1890/070064
Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm.
Journal of Industrial Microbiology and Biotechnology,
34(9), 577-588.
https://doi.org/10.1007/s10295-007-0234-4
Subramanian, S., Huiszoon, R. C., Chu, S. W., Bentley, W. E., & Ghodssi, R. (2020). Microsystems for biofilm characterization and sensing – A review.
Biofilm,
2, 100015.
https://doi.org/10.1016/j.bioflm.2019.100015
Xue, Y., Zhao, J., Qiu, R., Zheng, J., Lin, C., Ma, B., & Wang, P. (2015). In situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater.
Applied Surface Science,
357(A), 60-68.
https://doi.org/10.1016/j.apsusc.2015.08.232
Yang, Y. F., Wan, L. S., & Xu, Z. K. (2011). Surface engineering of microporous polypropylene membrane for antifouling: A mini-review.
Journal of Adhesion Science and Technology,
25(1–3), 245-260.
https://doi.org/10.1163/016942410X520835
Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology―past, present and future steps towards efficient and environmentally friendly antifouling coatings.
Progress in Organic Coatings,
50(2), 75-104.
https://doi.org/10.1016/j.porgcoat.2003.06.001