da Silva, R. F., Hansen, J. E., Rijnsdorp, D. P., Lowe, R. J., & Buckley, M. L. (2022). The influence of submerged coastal structures on nearshore flows and wave runup.
Coastal Engineering,
177, August. 104194.
https://doi.org/10.1016/j.coastaleng.2022.104194
Dean, R. G., Chen, R., & Browder, A. E. (1997). Full scale monitoring study of a submerged breakwater, Palm Beach, Florida, USA.
Coastal Engineering,
29(3–4), 291-315.
https://doi.org/10.1016/S0378-3839(96)00028-2
Deltares. (2017). Input trduction tool – User manual.
Groenewoud, M. D., van de Graaff, J., Claessen, E. W. M., & van der Biezen, S. C. (1996). Effect of submerged breakwater on profile development.
Coastal Engineering,
1996, 2428-2441.
https://doi.org/10.1061/9780784402429.188
Haller, M. C., Dalrymple, R. A., & Svendsen, I. A. (2002). Experimental study of nearshore dynamics on a barred beach with rip channels.
Journal of Geophysical Research,
107(C6), 14-1 14-21.
https://doi.org/10.1029/2001jc000955
Jang, S., Cho, S., Park, W., & Jeong, H. (2014). A study on a characteristics of sediment transport around Myeongseondo at Jinha Beach. Journal of Korean Society of Coastal Disaster Prevention, 1(3), 118-125.
Johnson, H. K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez-Marco, D., & Caceres, I. (2005). Modelling of waves and currents around submerged breakwaters.
Coastal Engineering,
52(10–11), 949-969.
https://doi.org/10.1016/j.coastaleng.2005.09.011
Kang, M. H., Kim, J. S., Park, J. K., & Lee, J. S. (2015). Characteristics of wave-induced currents using the SWASH model in Haeundae Beach.
Journal of Korean Society of Coastal and Ocean Engineers,
27(6), 382-390.
https://doi.org/10.9765/kscoe.2015.27.6.382
Lee, J.-S., Park, M.-W., Kang, M.-H., & Kang, T.-S. (2015). Analysis of hydraulic characteristic in surf zone using the SWASH model during Typhoon NAKRI(1412) in Haeundae Beach.
Journal of the Korean Society of Marine Environment and Safety,
21(5), 591-598.
https://doi.org/10.7837/kosomes.2015.21.5.591
Liang, B., Wu, G., Liu, F., Fan, H., & Li, H. (2015). Numerical study of wave transmission over double submerged breakwaters using non-hydrostatic wave model.
Oceanologia,
57(4), 308-317.
https://doi.org/10.1016/j.oceano.2015.07.002
Lim, C., Kim, T. K., Lee, S., Yeon, Y. J., & Lee, J. L. (2021). Assessment of potential beach erosion risk and impact of coastal zone development: a case study on Bongpo-Cheonjin Beach.
Natural Hazards and Earth System Sciences,
21(12), 3827-3842.
https://doi.org/10.5194/nhess-21-3827-2021
Lorenzoni, C., Postacchini, M., Mancinelli, A., & Brocchini, M. (2012). The morphological response of beaches protected by different breakwater configurations.
Coastal Engineering Proceedings,
1(33), 52.
https://doi.org/10.9753/icce.v33.sediment.52
Magdalena, I., Atras, M. F., Sembiring, L., Nugroho, M. A., Labay, R. S. B., & Roque, M. P. (2020). Wave transmission by rectangular submerged breakwaters.
Computation,
8(2), 56.
https://doi.org/10.3390/computation8020056
Nobuoka, H., Irie, I., Kato, H., & Mimura, N. (1996). Regulation of Nearshore Circulation by Submerged Breakwater for Shore Protection.
Coastal Engineering,
1996, 2391-2403.
https://doi.org/10.1061/9780784402429.185
Ranasinghe, R., Turner, I. L., & Symonds, G. (2006). Shoreline response to multi-functional artificial surfing reefs: A numerical and physical modelling study.
Coastal Engineering,
53(7), 589-611.
https://doi.org/10.1016/j.coastaleng.2005.12.004
Rathnayaka, D., & Tajima, Y. (2020). Applicability of multilayer wave model for prediction of waves and undertow velocity profiles over a submerged breakwater.
Proceedings of the 10th International Conference on Asian and Pacific Coasts(APAC 2019),
76, 781-788.
https://doi.org/10.1007/978-981-15-0291-0_107
Stelling, G. S., & Duinmeijer, S. P. A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows.
International Journal for Numerical Methods in Fluids,
43(12), 1329-1354.
https://doi.org/10.1002/fld.537
Stelling, G., & Zijlema, M. (2003). An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation.
International Journal for Numerical Methods in Fluids,
43(1), 1-23.
https://doi.org/10.1002/fld.595
Suzuki, T., Verwaest, T., Hassan, W., Veale, W., Reyns, J., Trouw, K., Troch, P., & Zijlema, M. (2011). The applicability of SWASH model for wave transformation and wave overtopping: A case study for the Flemish coast.
Proceedings of the 5th International Conference on Advanced COmputational Methods in Engineering (ACOMEN 2011).,
https://doi.org/10.13140/2.1.4232.7045
Villani, M., Bosboom, J., Zijlema, M., & Stive, M. J. (2012). Circulation patterns and shoreline response induced by submerged breakwaters.
Coastal Engineering Proceedings,
1(33), 25.
https://doi.org/10.9753/icce.v33.structures.25
Zijlema, M., & Stelling, G. S. (2008). Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure.
Coastal Engineering,
55(10), 780-790.
https://doi.org/10.1016/j.coastaleng.2008.02.020
Zijlema, M., & Stelling, G. S. (2005). Further experiences with computing non-hydrostatic free-surface flows involving water waves.
International Journal for Numerical Methods in Fluids,
48(2), 169-197.
https://doi.org/10.1002/fld.821
Zijlema, M., Stelling, G., & Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters.
Coastal Engineering,
58(10), 992-1012.
https://doi.org/10.1016/j.coastaleng.2011.05.015