Derradji-Aouat, A. (2000). A Unified Failure Envelope for Isotropic Fresh Water Ice and Iceberg Ice.
DNV (Det Norske Veritas). (2006). Ice Collision Scenario.
Ehlers, S., & Østby, E. (2012). Increased Crashworthiness due to Arctic Conditions-The Influence of Sub-Zero Temperature.
Marine Structures,
28, 86-100.
FSICR (Finnish-Swedish Ice Class Rules). (2008). Finnish and Swedish Ice Class Rules 2008.
IACS, UR (International Association of Classification Societies). (2011). Requirements Concerning Polar Class.
Jia, Z., Ringsberg, JW., & Jia, J. (2009). Numerical Analysis of Nonlinear Dynamic Structural Behaviour of Ice-Loaded Side-Shell Structures.
International Journal of Steel Structures,
9(3), 219-230.
Kierkegaard, H. (1993). Ship Collisions with Icebergs. Instituttet for Skibs-og Havteknik: Danmarks Tekniske Højskole.
Kim, E. (2014). Experimental and Numerical Studies Related to the Coupled Behavior of Ice Mass and Steel Structures during Accidental Collisions.
Liu, Z. (2011). Analytical and Numerical Analysis of Iceberg Collisions with Ship Structures..
Matsui, S., Uto, S., Yamada, Y., & Watanabe, S. (2018). Numerical Study on the Structural Response of Energy-Saving Device of Ice-Class Vessel Due to Impact of Ice Block.
International Journal of Naval Architecture and Ocean Engineering,
10(3), 367-375.
https://doi.org/10.1016/j.coldregions.2010.10.005
Melanson, PM., Meglis, IL., Jordaan, IJ., & Stone, BM. (1999). Microstructural Change in Ice: I. Constant-Deformation-Rate Tests under Triaxial Stress Conditions.
Journal of Glaciology,
45(151), 417-422.
https://doi.org/10.3189/S0022143000001271
Min, DK., Shin, DW., Kim, SH., Heo, YM., & Cho, SR. (2012). On the Plastic Deformation of Polar-Class Ships Single Frame Structures Subjected to Collision Loadings.
Journal of the Society of Naval Architects of Korea,
49(3), 232-238.
https://doi.org/10.3744/SNAK.2012.49.3.232
Nam, W., Amdahl, J., & Hopperstad, OS. (2016). Influence of Brittle Fracture on the Crashworthiness of Ship and Off-Shore Structures in Arctic Conditions. Proceedigs of 7th International Conference on Collision and Grounding of Ships and Offshore Structures (ICCGS 2016) Ulsan Korea.
Nam, W., Hopperstad, OS., & Amdahl, J. (2018). Modelling of the Ductile-Brittle Fracture Transition in Steel Structures with Large Shell Elements: A Numerical Study.
Marine Structures,
62, 40-59.
https://doi.org/10.1016/j.marstruc.2018.07.003
NORSOK Standard. (2004). N-004-Design of Steel Structures, Rev. 2., Lysaker. Standards Norway.
Ortiz, M., & Simo, JC. (1986). An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations.
International Journal for Numerical Methods in Engineering,
23(3), 353-66.
https://doi.org/10.1002/nme.1620230303
Palmer, A. (2013). Arctic Offshore Engineering. World Scientific.
Park, DK., Kim, DK., Park, C.-H., Park, DH., Jang, BS., Kim, BJ., & Paik, JK. (2015a). On the Crashworthiness of Steel-Plated Structures in an Arctic Environment: An Experimental and Numerical Study.
Journal of Offshore Mechanics and Arctic Engineering,
137(5), 51501.
https://doi.org/10.1115/1.4031102
Park, DK., Kim, DK., Seo, JK., Kim, BJ., Ha, YC., & Paik, JK. (2015b). Operability of Non-Ice Class Aged Ships in the Arctic Ocean-Part II: Accidental Limit State Approach.
Ocean Engineering,
102, 206-215.
https://doi.org/10.1016/j.oceaneng.2015.04.038
Park, DK., Kim, KJ., Lee, JH., Jung, BG., Han, X., Kim, BJ., Seo, JK., Ha, ., Paik, JK., & Matsumoto, T. (2015c). Collision Tests on Steel-Plated Structures in Low Temperature. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, V003T02A012-V003T02A012
https://doi.org/10.1115/OMAE2015-42297
Petrovic, JJ. (2003). Review Mechanical Properties of Ice and Snow.
Journal of Material Science,
38(1), 1-6.
Ritch, R., Frederking, R., Johnston, M., Browne, R., & Ralph, F. (2008). Local Ice Pressures Measured on a Strain Gauge Panel during the CCGS Terry Fox Bergy Bit Impact Study.
Cold Regions Science and Technology,
52(1), 29-49.
https://doi.org/10.1016/j.coldregions.2007.04.017
Ritchie, RO., Knott, JF., & Rice, JR. (1973). On the Relationship between Critical Tensile Stress and Fracture Toughness in Mild Steel.
Journal of the Mechanics and Physics of Solids,
21(6), 395-410.
https://doi.org/10.1016/0022-5096(73)90008-2
Sammonds, PR., Murrell, SAF., & Rist, MA. (1989). Fracture of Multi-Year Sea Ice under Triaxial Stresses: Apparatus Description and Preliminary Results.
Journal of Offshore Mechanics and Arctic Engineering,
111(3), 258-263.
https://doi.org/10.1115/1.3257156
Yu, T., Liu, K., Wang, Q., & Wang, J. (2018). Simulation of Ship-Ice Collision Using a Constitutive Model of Ice Material Considering the Effect of Temperature. Proceedings of the 28th International Ocean and Polar Engineering Conference Sapporo Japan.
Zhu, Ling., Cai, Wei., Chen, Mingsheng., Li, Yinggang., & Zhang, Shengming. (2018). Dynamic Analysis of Ship Plates Under Repeated Ice Floes Impacts Based on a Simplified Ship-Ice Collision Model. Proceedings of the 28th International Ocean and Polar Engineering Conferencem Sapporo Japan.