ASTM, E8. (2004). Standard Test Methods of Tension Testing of Metallic Materials, American Society for Testing and Materials.
Algarni, M., Choi, Y., & Bai, Y. (2017). A Unified Material Model for Multiaxial Ductile Fracture and Extremely Low Cycle Fatigue of Inconel 718.
International Journal of Fatigue,
96, 162-177.
https://doi.org/10.1016/j.ijfatigue.2016.11.033
Bao, Y., & Wierzbicki, T. (2004). A Comparative Study on Various Ductile Crack Formation Criteria.
Journal of Engineering Materials and Technology,
126(3), 314-324.
https://doi.org/10.1115/1.1755244.
Cerik, BC., Park, B., Park, SJ., & Choung, J. (2019a). Simulation of Ship Collision and Grounding Damage Using Hosford-Coulomb Fracture Model for Shell Elements.
Ocean Engineering,
173, 415-432.
https://doi.org/10.1016/j.oceaneng.2019.01.004
Cerik, BC., Park, B., Park, SJ., & Choung, J. (2019b). Modeling, Testing and Calibration of Ductile Crack Formation in Grade DH36 Ship Plates.
Marine Structures,
66, 27-43.
https://doi.org/10.1016/j.marstruc.2019.03.003
Cheng, C., Meng, B., Han, JQ., Wan, M., Wu, XD., & Zhao, R. (2017). A Modified Lou-Huh Model for Characterization of Ductile Fracture of DP590 Sheet.
Materials and Design,
118, 89-98.
https://doi.org/10.1016/j.matdes.2017.01.030
Choung, J., Shim, CS., & Kim, KS. (2011). Plasticity and Fracture Behaviors of Marine Structural Steel, Part III: Experimental Study on Failure Strain.
Journal of Ocean Engineering and Technology,
25(3), 53-65.
https://doi.org/10.5574/KSOE.2011.25.3.053
Cho, SR., Choi, SI., & Son, SK. (2015). Dynamic Material Properties of Marine Steels under Impact Loadings. Proceedings of the 2015 World Congress on Advances in Structural Engineering and Mechanics Incheon Korea.
Cockroft, MG., & Latham, DJ. (1968). Ductility and the Workability of Metals. Journal of the Institute of Metals, 96, 33-39.
DNVGL. (2018). Offshore Standards - Metallic Materials, DNVGL-OS-B101..
Dunand, M., & Mohr, D. (2011). On the Predictive Capabilities of the Shear Modified Gurson and the Modified Mohr-Coulomb Fracture Models over a Wide Range of Stress Triaxialities and Lode Angles.
Journal of the Mechanics and Physics of Solids,
59, 1374-1394.
https://doi.org/10.1016/j.jmps.2011.04.006
Gurson, AL. (1977). Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Media.
Journal of Engineering Materials and Technology,
99(1), 2-15.
https://doi.org/10.1115/1.3443401
Johnson, GR., & Cook, WH. (1985). Fracture Characteristics of Three Metals Subjected to Various Strain, Strain Rates Temperatures and Pressures.
Engineering Fracture Mechanics,
21(1), 31-48.
https://doi.org/10.1016/0013-7944(85)90052-9
Kõrgesaar, M., Remes, H., & Romanoff, J. (2014). Size Dependent Response of Large Shell Elements under In-plane Tensile Loading.
International Journal of Solids and Structures,
51(21–22), 3752-3761.
https://doi.org/10.1016/j.ijsolstr.2014.07.012
Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture.
Journal of Engineering Materials and Technology,
107(1), 83-89.
https://doi.org/10.1115/1.3225775
Lou, Y., Huh, H., Lim, S., & Pack, K. (2012). New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals.
International Journal of Solids and Structures,
49(25), 3605-3615.
https://doi.org/10.1016/j.ijsolstr.2012.02.016
McClintock, FA. (1968). A Criterion for Ductile Fracture by the Growth of Holes.
Journal of Applied Mechanics.
35(2), 363-371 https://doi.org/10.1115/1.3601204.
Min, DK., & Cho, SR. (2012). On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads.
Journal of the Society Naval Architects of Korea,
49(4), 281-286.
https://doi.org/10.3744/SNAK.2012.49.4.281
Mohr, D., & Marcadet, S. (2015). Micromechanically-motivated Phenomenological Hosford-coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialites.
International Journal of Solids and Structures,
67–68, 40-55.
https://doi.org/10.1016/j.ijsolstr.2015.02.024
Oh, SI., Chen, CC., & Kobayashi, S. (1979). Ductile Fracture in Axisymmetric Extrusion and Drawing-Part 2: Workability in Extrusion and Drawing.
Journal of Engineering for Industry,
101(1), 36-44.
https://doi.org/10.1115/1.3439471
Park, N., Huh, H., Nam, JB., & Jung, CG. (2015). Anisotropy Effect on the Fracture Model of DP980 Sheets Considering the Loading Path.
International Journal of Automotive Technology,
16(1), 73-81.
https://doi.org/10.1007/s12239-015-0008-3
Park, N., & Huh, H. (2016). Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy.
Transactions of Materials Procssing,
25(2), 91-95.
http://dx.doi.org/10.5228/KSTP.25.2.91
Park, SJ., Lee, K., Choung, J., & Walters, CL. (2018). Ductile Fracture Prediction of High Tensile Steel EH36 Using New Damage Functions.
Ships and Offshore Structures,
13, 68-78.
https://doi.org/10.1080/17445302.2018.1426433
Simulia. (2018). Abaqus User Manual.
Tornqvist, R. (2003). Design of Crashworthy Ship Structures. Ph.D. Thesis, Technical University of Denmark..
Walters, CL. (2014). Framework for Adjusting for Both Stress Triaxiality and Mesh Size Effect for Failure of Metals in Shell Structures.
International Journal of Crashworthiness,
19(1), 1-12.
https://doi.org/10.1080/13588265.2013.825366
Xinke, X., Pan, H., Bai, Y., Yanshan, L., & Lin, C. (2019). Application of the Modified Mohr-Coulomb Fracture Criterion in Predicting the Ballistic Resistance of 2024-T351 Aluminum Alloy Plates Impacted by Blunt Projectiles.
International Journal of Impact Engineering,
123, 26-37.
https://doi.org/10.1016/j.ijimpeng.2018.09.015