Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications
Haesang Yang, Keunhwa Lee, Youngmin Choo, Kookhyun Kim
J. Ocean Eng. Technol.. 2020;34(5):371-376.   Published online 2020 Aug 4     DOI: https://doi.org/10.26748/KSOE.2020.016
Citations to this article as recorded by Crossref logo
An estimation method of sound speed profile based on grouped dilated convolution informer model
Siyuan Qin, Yi Zhang, Zhou Chen
Frontiers in Marine Science.2025;[Epub]     CrossRef
An Estimation Method for Sound Speed Profile Based on Large Depth Array Multipath Delay
Xiao Feng, Cheng Chen, Kunde Yang
IEEE Geoscience and Remote Sensing Letters.2024; 21: 1.     CrossRef
Inversion of shallow seabed structure and geoacoustic parameters with waveguide characteristic impedance based on Bayesian approach
Hanhao Zhu, Yangyang Xue, Qunyan Ren, Xu Liu, Jiahui Wang, Zhiqiang Cui, Shu Zhang, Huili Fan
Frontiers in Marine Science.2023;[Epub]     CrossRef
GIT: A Transformer-Based Deep Learning Model for Geoacoustic Inversion
Sheng Feng, Xiaoqian Zhu, Shuqing Ma, Qiang Lan
Journal of Marine Science and Engineering.2023; 11(6): 1108.     CrossRef
Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis
Joung Woon Woo, Yeon Joong Kim, Jong Sung Yoon
Journal of Korean Society of Coastal and Ocean Eng.2022; 34(4): 128.     CrossRef
Machine learning approaches for ray-based ocean acoustic tomography
Jihui Jin, Priyabrata Saha, Nicholas Durofchalk, Saibal Mukhopadhyay, Justin Romberg, Karim G. Sabra
The Journal of the Acoustical Society of America.2022; 152(6): 3768.     CrossRef