
1. Introduction

Cylindrical floating and underwater structures are used widely, 
including spar-type offshore platforms, monopile offshore wind 
turbines, spar and semi-submersible floating offshore wind turbines 
(FOWTs), marine risers and pipelines, and submerged floating 
tunnels. Several frequency- and time-domain numerical methods have 
been proposed to understand the hydrodynamic behaviors. In 
particular, in time domain analysis, computational fluid dynamics 
(CFD), potential-flow-based numerical wave tank, and Cummins 
equation have been used to assess the wave forces and dynamic 
behaviors of cylindrical structures in the ocean (Abbasnia and Soares, 
2018; Dafnakis et al., 2020; Paulsen, et al., 2014). On the other hand, 
these numerical methods are time-inefficient, particularly when the 
fluid domain is large, structure size is large, multiple bodies interact 
(multi-body problem), and hydroelasticity is considered. These 
methods may be inefficient if many simulations are considered in the 
initial design optimization phase. 

An alternative method is to use the Morison equation (Morison et 
al., 1950), which is used widely for cylindrical objects because of its 
simplicity and low computational expense (Boccotti et al., 2013; Chen 

et al., 2015; Jin et al., 2021; Lin et al., 2018). Nevertheless, the 
equation has fundamental assumptions in that a wavelength is much 
larger than the structural characteristic length (i.e., a slender body 
approximation), and the radiation-damping force is not that 
significant. The Morison equation has inertia, added mass, and drag 
coefficients. The inertia coefficient denotes the contribution from 
Froude–Krylov (FK) and diffraction forces, and the representative 
value of the inertia coefficient for cylinders is two for a slender body 
(Faltinsen, 1993). The inertia coefficient should be modified if the 
cylinder is exposed to short waves due to significant diffraction. Many 
studies have examined the validity of the Morison equation for vertical 
and horizontal cylinders. For vertical cylinders, Chakrabarti and Tam 
(1975) investigated the wave forces from MacCamy Fuchs's analytical 
solution (potential theory) and the Morison equation for a bottom- 
mounted vertical cylinder. They introduced the effective inertia 
coefficient (EIC) by comparing the wave forces from the Morison 
equation with the analytical solution. The EIC tended to decrease with 
the Keulegan–Carpenter (KC) number because of the significant 
diffraction force. Chung (2018) reported that the inertia coefficient 
could be a function of the wave frequency when the structure is close 
to the free surface. This means selecting the EIC is critical, and large 
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errors are expected when inputting a representative/theoretical inertia 
coefficient. Chang et al. (2019) compared results from the numerical 
wave tank and Morison equation up to second-order wave kinematics 
for the vertical cylinder and discussed that the Morison equation 
underestimates or overestimates wave forces as wave steepness is 
high. In contrast, the overall comparison for low-wave steepness is 
excellent. For horizontal cylinders, Li et al. (1997) compared the 
in-line responses of fully submerged cylinders between experiments 
and the Morison equation, highlighting that the inertia coefficients do 
not change substantially with regard to the KC number. On the other 
hand, Chen et al. (2015) compared the Morison equation with a CFD 
simulation. They reported that a partly submerged horizontal cylinder 
could induce a large underprediction of the wave force by up to 50% 
relative errors. Jin (2022) and Jin et al. (2023) showed some 
differences between inertia forces and wave excitation forces from 
potential theory observed when the horizontal cylinder is close to the 
free surface, resulting in a difference in elastic behaviors, especially in 
short waves. These studies support the importance of correctly 
selecting the inertia coefficient in the Morison equation for short 
waves (or high KC numbers).

This study proposes an EIC in the Morison equation in regular and 
random waves to compare high-fidelity numerical methods and the 
Morison equation. The OC4 semi-submersible floating offshore wind 
turbine (FOWT) platform was selected for a feasibility demonstration. 
The Morison equation can be used to evaluate the hydrodynamic 
behavior and its effectiveness to some degree (González et al., 2021; 
Takata et al., 2021). In addition, Kvittem et al. (2012) calculated the 
EIC by comparing the added mass from potential theory with the 
added mass term in the Morison equation, showing improvement in 
the motion response amplitude operator (RAO) of semi-submersible 
FOWT. Compared to previous research (Kvittem et al., 2012), this 
study improved the EIC approach in that each column has a separate 
EIC at various wave periods and directions. This study first assessed 
the horizontal and vertical wave forces using the Morison equation and 
potential theory at each column, wave period, and wave direction. An 
estimation of the EIC under regular and random waves was followed, 
which minimized the difference between the two methods. The EICs, 

wave forces, phase angles, and dynamic motions were compared 
systematically to show the feasibility of an EIC concept under regular 
and random wave excitations.

2. Configuration of OC4 Semi-Submersible 
FOWT Platform

Fig. 1 presents the side and top views of the OC4 semi-submersible 
FOWT platform. Although this FOWT consists of blades, nacelle, 
tower, floater, and mooring lines, this study only focused on the 
platform hydrodynamics. The platform has one center column 
(Column 1), three side columns (Columns 2–4), and slender pontoons 
and braces. The side columns consist of upper and base columns with 
different diameters. This study only considered four large columns 
(Columns 1–4); the others were neglected because pontoons and 
braces are slender and are typically modeled by the Morison equation. 
The direct comparison between the potential theory and the Morison 
equation for Columns 1–4 was possible. The detailed design 
parameters are not described in this paper and can be found elsewhere 
(Robertson et al., 2014). 

3. Method

3.1 Morison Equation
The Morison equation (Morison et al., 1950) for a moving body 

consists of linear inertia, linear added mass, and quadratic drag terms, 
which can be written as follows:  

( )ρ ρ ρ= ∇ − ∇ + − −  AM I A DF C a C X C v X v X (1)

where  is the water density; CI, CA, and CD are the inertia, added 
mass, and drag coefficients, respectively; a and v are the acceleration 
and velocity of fluid particles at a geometric center; X  and X  are the 
acceleration and velocity of the platform; and ∇ and A are the 
displaced volume and drag area. CI, CA, and CD in the Morison 
equation are typically obtained experimentally and through analytical 
solutions and numerical simulations. This study adopted the Airy wave 

(a) Side view (b) Top view

Fig. 1 Configuration of OC4 semi-submersible FOWT platform (only four columns are considered in this study).
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theory to obtain wave kinematics. 
This study focused on the inertia force FI, which is the first term in 

Eq. (1). Based on the configuration given in Fig. 1, the way to evaluate 
FI in the horizontal and vertical direction was different. In the case of 
the horizontal force, the column was first discretized into 20 elements 
along the vertical direction (1 m height for each element). The inertia 
force was calculated at each element with the element volume. The 
total force of each column was obtained by integrating the element 
forces. The volume exposed to water only needs to be considered in 
the case of the vertical force. A correction needs to be made if the top 
area is not exposed to water like OC4 semi-submersible because the 
Morison equation considers the body fully submerged in water. For 
Column 1 (the main column at the center), the inertia force was first 
estimated at its geometric center (i.e., z = -10 m) using the first term in 
Eq. (1). This portion was then corrected by deducting the FK force on 
the top surface because the top surface at the mean water level (i.e., z = 
0 m) is not exposed to water. For Columns 2–4, the base columns are 
only exposed to water in the vertical direction. Therefore, the inertia 
force was obtained only from the base columns at its geometric center 
(i.e., z = -17 m). The FK force at the location at which the upper and 
base columns meet (i.e., z = -14 m) was partly eliminated with the area 
of the top column. The following equation can be used for horizontal 
and vertical inertia forces on the column (FIH and FIV):

1
ρ

=
= ∇

E

e
e

IH IF C a (2)

ρ= ∇ + I TP AIV IF C a (3)

where   is the element number in the vertical direction; PI is the 

incident wave pressure; and AT denotes the surface on the top section 
that is not exposed to water. 

3.2 Potential Theory in Frequency Domain
Two fundamental equations of potential theory are the Laplace and 

Bernoulli equations. First, the first-order boundary value problem is 
solved by Green’s integral equation. In this problem, the governing 
equation is the Laplace equation, assuming inviscid, incompressible, 
and irrotational flows. The governing equation is solved with the 
boundary conditions on the free surface, bottom, body, and far-field, 
which results in the velocity potentials of incident, diffraction, and 
radiation waves as follows:

Φ = Φ + Φ + ΦI D R (4)

where Φ I , ΦD, and ΦR  are the first-order incident, diffracted, and 
radiated wave potentials. The first-order hydrodynamic pressure on the 
wetted body surface is given by the Bernoulli equation as follows:

( )ρ ∂ Φ + Φ + Φ= −
∂

I D RP
t (5)

The force is obtained by integrating the pressure over the wetted 
surface. The wave excitation force is obtained by the incident and 

Fig. 2 Panel model of OC4 semi-submersible FOWT platform.

diffracted wave pressures as: 

( )= + I D
Sb

P P dSEXF n (6)

where PI and PD are the incident and diffracted wave pressures, and Sb 
denotes the wetted surface. The 3D diffraction/radiation panel method 
was used to obtain the wave excitation forces and hydrodynamic 
coefficients (Lee, 1995). Fig. 2 presents the panel model used in this 
study. This study considered 7,181 panels below the mean water level. 

3.3 Effective Inertia Coefficient in Morison Equation
In the Morison equation given in Eq. (1), the inertia coefficient, CI, 

is defined as 1+CA where one and CA are related to the contribution 
from the FK and diffraction forces. In a cylindrical structure, CA is 
typically set to one, meaning that the contribution from that FK force is 
the same as that from the diffraction force (Faltinsen, 1993). On the 
other hand, as described by Chakrabarti and Tam (1975), the total 
force is significantly affected by large diffraction in short waves, 
which requires some correction in the inertia coefficient to be well 
correlated with the wave excitation force. As a result, the EIC was 
introduced in this study. The horizontal and vertical EICs for each 
column in regular waves are defined by Eqs. (7)–(8), respectively: 

( ) ( )
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where  and  are angular frequency and wave direction, respectively. 
In the case of random waves, depicting one EIC value is challenging, 
so a simple statistical approach was adopted. The time history of the 
wave excitation forces was first obtained by superposing the 
sinusoidal forces at different regular wave frequencies. The Pierson–
Moskowitz (PM) spectrum was considered for fully developed seas. 
The root mean square error (RMSE) between the time histories of the 
wave excitation force and the Morison inertia force was calculated at 
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different inertia coefficients. The inertia coefficient that gives the 
lowest RMSE was selected as EIC under random waves as follows:

( ) ( ) ( )( )2

1

, ,
, min

β β
β

=

 − =  
  


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t

T T
T

T
EX I

I,eff
F F

C
(9)

where  and  denote the time step and final time step,  is the peak 
period, and FI is the Morison inertia force. The Morison equation may 
not be correlated well when diffracted waves significantly change the 
phase of the total force in very short waves because the Morison 
equation uses the phase of fluid acceleration only.

3.4 Time-Domain Equation of Motion for Platform 
The time-domain equations of motion for the FOWT platform were 

established by the Cummins equation and Morison formula given in 
Eqs. (10)–(11) as follows:

( ) ∞  + + = +    EX RM + A X CX KX F F (10)

+ + =  MMX CX KX F (11)

where M is the mass matrix; A(∞) is the added mass matrix at infinite 
frequency; C is the external damping matrix; K is the hydrostatic and 
gravitational restoring matrix; FR is the convolution-integral based 
radiation damping force; and FM is the Morison force as defined as Eq. 
(1). A(∞) and FR can be obtained using the following equations:

( ) ( ) ( ) ( )
0

sin ω
ω

ω

∞

∞ = + 
t

t dtA A R (12)

( ) ( )
0

τ τ τ
∞

= − −  t dRF R X (13)

( ) ( ) ( )
0

2 cosω ω ω
π

∞

= t t dR B (14)

where A() and B() are the added mass and radiation damping 
matrices in the frequency domain and R() is the retardation function. 
A comparison of Eq. (10) with Eq. (11) showed that the heavy 
computation in the Cummins equation is due to FR. In the Morison 
equation, the radiation damping is excluded, and the last term of FM, 

Fig. 3 Flowchart of the overall procedures to obtain EIC for the 
irregular wave cases and run time-domain simulations 
from the Morison equation-based model.

which is the viscous drag force, is not considered. Fig. 3 shows the 
overall procedures to evaluate EICs for the irregular wave cases and 
run time-domain simulations from the Morison-equation-based model.

4. Results and Discussions

The Results and Discussion section compares the wave forces on the 
OC4 semi-submersible FOWT platform and platform motions 
obtained by the Morison inertia force and the wave excitation force by 
the potential theory.

4.1 Wave Force Under Regular Waves
Figs. 4–5 show the total horizontal and vertical excitation forces and 

Morison inertia forces with a fixed inertia coefficient of two and 
corresponding phase angles. The total forces were calculated at 
different regular wave frequencies and directions. The inertia 
coefficient was fixed to two, a representative value for cylindrical 

(a) Force, β = 0° (b) Force, β = 60° (c) Phase angle, β = 0° (d) Phase angle, β = 60°

Fig. 4 Comparison of the horizontal inertia force (CI = 2) and wave excitation forces and corresponding phase angles at different regular
wave frequencies and wave headings.



242 Chungkuk Jin et al.

objects. DIFF and MORI in the legends denote components related to 
the 3D potential theory and Morison equation. As shown in Fig. 4, the 
magnitudes of the horizontal forces coincide at the wave frequencies 
of lower than 1.0 rad/s, while the inertia force tends to be exaggerated 
at higher frequencies because of large diffraction and interaction 
between columns (i.e., wake effects). Although there is a large 
difference in the forces in the high-frequency region, the phase angles 
of the inertia forces are well matched with those of the excitation force. 
As shown in Fig. 5, the magnitudes and phases of the vertical forces 
are well matched up to 1.5 rad/s, even if some phase differences are 
observed in higher frequencies. These results show that if the 
magnitude of the inertia force is corrected by introducing the concept 
of the EIC, the Morison inertia force can be a good option for wave 
force calculation without losing significant accuracy while minimizing 
the computational cost.

Fig. 6 shows the EICs at different regular wave frequencies and wave 
directions. In this process, the force of each column obtained by two 
methods was compared, and the EIC was obtained for each column 
using Eqs. (7)–(8). C1–C4 in the legends denote Columns 1–4. As 
shown in Fig. 6 (a)–(b), the horizontal EICs of all columns tend to 
decrease as the wave frequency increases. As shown in Fig.  6 (c)–(d), 
the vertical EICs also tend to decrease as the wave frequency increases, 
except for the central column (Column 1). This is because the inertia 
force of Column 1 is based on the wave kinematics estimated at the 
center of the column (z = -10 m), which cannot represent vertical inertia 
force accurately. Nevertheless, the given method can still result in 
comparable results by introducing the concept of EIC.   

4.2 Wave Force Under Random Waves
Similar comparisons were made under random waves. The time 

histories of random waves were produced by superposing regular wave 
components from the PM spectrum, and the time histories of the wave 
forces were obtained. Figs. 7–8 show the time history comparison of 
horizontal and vertical wave forces under random waves at different 
peak periods and wave directions. The wave excitation force, inertia 
force with a fixed inertia coefficient of 2, and the inertia force with the 
EIC obtained by Eq. (9) were compared. In addition, a three-hour 
simulation for each wave condition was considered to acquire EIC, and 
the time histories of the first 300 s are only presented for a better 
time-history comparison. As shown in Fig. 7, for the horizontal force, 
a representative inertia coefficient of 2 was sufficient when the peak 
period was large (i.e., 15 s) and the wave direction was 0°. On the other 
hand, a significant overestimation in force was observed in the inertia 
force with a representative inertia coefficient at a low peak period (i.e., 
6 s) and wave direction of 60°. This overestimation was corrected 
using EIC. With EIC, the time history of the inertia force showed good 
agreement with that of the wave excitation force. As shown in Fig. 8, 
similar correction effects were also valid for the vertical wave forces 
because the EIC significantly reduces the error between the two 
methods. In addition, estimating the EIC using RMSE between the 
wave excitation force and the Morison inertia force was acceptable. 

Fig. 9 shows the EICs under random waves at different peak periods 
and wave directions. The trends and magnitudes are similar to those in 
Fig. 6 under regular waves. The EICs under random waves show more 
smothered results. This makes sense because random waves consider 

(a) Force, β = 0° (b) Force, β = 60° (c) Phase angle, β = 0° (d) Phase angle, β = 60°

Fig. 5 Comparison of the vertical inertia force (CI = 2) and wave excitation forces and corresponding phase angles at different regular
wave frequencies and wave headings.

(a) Horizontal, β = 0° (b) Horizontal, β = 60° (c) Vertical, β = 0° (d) Vertical, β = 60°

Fig. 6 Effective horizontal (a)–(b) and vertical (c)–(d) inertia coefficients (CI,eff) of Columns 1–4 (C1–C4) at different regular wave 
frequencies and wave directions.
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(a) Force on Column 1, Tp = 15 s, β = 0° (b) Force on Column 2, Tp = 15 s, β = 0° (c) Total force, Tp = 15 s, β = 0°

(d) Force on Column 1, Tp = 6 s, β = 60° (e) Force on Column 2, Tp = 6 s, β = 60° (f) Total force, Tp = 6 s, β = 60°
Fig. 7 Time histories of the horizontal inertia forces from the Morison equation and wave excitation forces from potential theory at 

different peak periods and wave directions.

(a) Force on Column 1, Tp = 15 s, β = 0° (b) Force on Column 2, Tp = 15 s, β = 0° (c) Total force, Tp = 15 s, β = 0°
Fig. 8 Time histories of the vertical inertia forces from the Morison equation and wave excitation forces from potential theory.

(a) Horizontal, β = 0° (b) Horizontal, β = 60° (c) Vertical, β = 0° (d) Vertical, β = 60°
Fig. 9 Effective horizontal (a–b) and vertical (c–d) inertia coefficients (CI,eff) of Columns 1–4 (C1–C4) under random waves at different

peak periods and wave directions.

(a) Horizontal (b) Vertical
Fig. 10 Error of the horizontal (a) and vertical (b) inertia forces at different peak periods and wave directions (the values are interpolated).
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many frequency components. 
Fig. 10 summarizes the errors of inertia force. The error was 

calculated by comparing the percentage difference between the 
standard deviation of the wave excitation force and that of the inertia 
force with EIC. Some errors up to 24.94% at a peak period of 6 s and 
wave direction of 45° were obtained for horizontal wave force. On the 
other hand, the errors in the horizontal force were reduced 
significantly as the peak period increased. For example, the errors at a 
wave heading of 60° decreased to 6.15% and 0.26% at peak periods of 
8 s and 15 s. Regarding the vertical force, the error is within 10% 
regardless of the peak period and wave direction. 

4.3 Dynamic Response of Platform Under Random Waves
Sections 4.1–4.2 show the feasibility of the EIC concept. The 

method can be used for fixed cylindrical structures because the 
horizontal and vertical forces are correctly estimated by correcting the 
inertial forces in the Morison equation. In Section 4.3, the EIC concept 
was further checked for floating structures by comparing the motions 
between the two methods. A commercial time-domain dynamics 
simulation program, OrcaFlex, was used to obtain the dynamic 
motions of the OC4 semi-submersible FOWT platform. The models 
based on diffraction theory and the Morison approach were established 
separately, as expressed in Eqs. (10)–(11). Each column was 
discretized into 1-m elements in the Morison approach, and the 
Morison inertia coefficient was inputted separately. Note that each 
column has the same inertia coefficient. The pressure correction in 
vertical force, PIAT in Eq. (3), was inputted as an external force after 
precalculation. For a moving body, an added mass coefficient needs to 
be inputted, which was obtained by subtracting one from the obtained 
inertia coefficient (i.e., effective added mass coefficient). In the 
comparisons, only heave, roll, and pitch degree-of-freedom (DOF) 

motions were considered, while the other DOF motions were 
constrained because the mooring lines were not modeled. In this 
demonstration, 10% damping was considered in the heave, roll, and 
pitch DOFs, which excludes the influence of added mass because the 
effective added mass coefficient varies according to given 
environmental conditions. A time-domain simulation was conducted 
with a simulation time of one hour with a fixed time interval of 0.1 s. 
Random waves were generated by superposing 200 regular waves 
from the Jonswap wave spectrum with an enhancement parameter of 
two. In addition, the computational time of the Morison-equation- 
based model was approximately 25% faster than the Cummins- 
equation-based approach. On the other hand, it can vary depending on 
the division of the Morison element. In the present case, 1-m elements 
were used for Morison force calculations, which is considered 
acceptable. The Morison equation can be much more time-efficient if 
the proper element size is selected. 

Figs. 11–12 show the time histories and spectra of heave and pitch 
motions based on models with the Morison equation and potential 
theory at different peak periods. In this demonstration, the wave 
heading was fixed to 0°. When the peak period was 15 s, a large 
discrepancy was observed between heave motions based on the 
Morison equation with a fixed inertia coefficient of two and diffraction 
theory, which is corrected by the EIC concept. The pitch motion of the 
current model is based primarily on the surge force, which results in a 
good comparison regardless of the inertia coefficient correction. At a 
peak period of 6 s, however, moderate differences were observed in 
both heave and pitch motions. Various coupling effects were observed 
in the model with Morison force because the Morison equation 
considers instantaneous positions instead of a fixed location for 
kinematics calculations as in potential theory. Although there is no 
wave energy at the lower frequency region, the pitch spectra at a peak 

(a) Tp = 6 s, β = 0° (b) Tp = 15 s, β = 0°

(c) Tp = 6 s, β = 0° (b) Tp = 15 s, β = 0°
Fig. 11 Time histories of the heave (a)–(b) and pitch motions (c)–(d) based on models with Morison equation and potential theory at 

different peak periods.
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period of 6 s showed a low-frequency peak at the pitch natural 
frequency only from Morison models. A thorough study still needs to 
validate the EIC concept under different wave conditions and floating 
structures. The Morison equation can also be extended to include 
second-order wave inertia forces, as reported by Kim and Chen (1994).

5. Conclusions

This paper introduced the concept of EIC in the Morison equation to 
make a better estimation of the wave forces and platform motions 
through the Morison equation. The OC4 semi-submersible FOWT 
platform was considered. The EIC was estimated by comparing the 
wave excitation force by potential theory and inertia force using the 
Morison equation. Various regular and random waves at different 
periods and directions were considered. First, horizontal and vertical 
(surge and heave) wave forces were assessed at various regular wave 
frequencies. Large errors in the horizontal force were observed with a 
fixed inertia coefficient of two. The errors tended to increase when the 
wave direction and wave frequency increased, and the EIC decreased 
the discrepancy between the two methods. Although similar trends 
were observed under random waves to regular waves, a smoother EIC 
was obtained because it considers many wave frequency components. 
The adoption of EIC reduces the difference between the two forces 
significantly. The OC4 platform motions were then compared under 
wave forces using two methods. The motion comparison results show 
acceptable agreement at the longer wave case. These results show that 
the concept of EIC can play some role in mass simulations in the early 
design stage to provide a range of design parameters quickly so that 
the design optimization can be done in a time-efficient manner. A 
rigorous study still needs to be carried out under various wave 

conditions and other floating structures to assess the feasibility of the 
EIC concept. 
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