
1. Introduction

The main objective of research on autonomous systems is to allow a 

complex unmanned system to operate autonomously without user 

intervention for a long period. The ability to adapt to complex and 

variable environments is required for the stable operation of 

autonomous systems for several hours or days without the intervention 

of users from the outside in real-world environments. To make 

decisions such as whether to continue a mission under various 

emergency situations and redesign the procedures for carrying out the 

mission, a complex autonomous system needs to be able to analyze its 

situation at a high level and behave accordingly.

Such decision making is more difficult in a marine environment, 

which experiences significant external disturbances. These 

disturbances affect the dynamics of a complex autonomous system 

moving in the environmentincrease the system’s uncertainty. 

Furthermore, an unmanned system has a vast operating range in a 

marine environment, whereas the capabilities of the sensors that can be 

used in recognition systems are limited. In particular, the 

impermeability of water to electromagnetic waves significantly 

hinders communication underwater, and this communication difficulty 

makes the operation of complex maritime systems more difficult, 

increasing the need for research.

Various studies on autonomous marine vehicle (AMV) systems 

have been conducted, but they mainly considered the navigation, 

guidance, and control algorithms of marine vehicles focusing on the 

development of partial autonomy technology. Those studies 

presuppose intermittent user interventions at times when complicated 

decision-making is required in the course of performing the mission 

given to the unmanned system. However, the mission planning 

capability for specifying and formulating abstract missions for 

unmanned systems is required, in addition to traditional autonomy 

technology elements, to build the ultimate AMV that can perform 

complex missions for a long period without user intervention (Kim and 

Lee, 2018).

In this study, we developed a series of procedures for planning 

long-term autonomous missions using a complex autonomous system 

consisting of an autonomous surface vehicle (ASV) and multiple 
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autonomous underwater vehicles (AUVs). The following mission 

scenario was considered to show the usefulness and characteristics of 

this complex autonomous system, which increased the performance 

efficiency and possibility of successfully completing a mission by 

using multiple AMVs simultaneously. In this scenario, the complex 

system departed from the coast, surveyed the ocean floor terrain in 

distant areas, and then returned. Bathymetry surveys can only be 

carried out by underwater vehicles. However, because each AUV had a 

limited usable battery life, it had to be loaded on the ASV and moved 

to the target area. Furthermore, because there were multiple regions to 

survey, the AUVs needed to recharge their batteries through the ASV. 

In this mission scenario, (1) multiple autonomous systems were used, 

(2) the type of actions that could be selected varied depending on the 

system, and (3) it considered resource limitations, thus the problem is 

regarded as a heterogeneous/multiple system problem.

A mission planning algorithm that could deal with the concurrency 

and complexity of the mission was required to solve the given mission 

scenario. Many examples of studies on mission planner algorithms can 

be found because they are applied in various fields, but it is difficult to 

generalize these algorithms because each application field has 

different problem characteristics. To overcome this limitation, this 

study attempted to use the planning domain definition language 

(PDDL), which is a language tool developed to solve planning 

problems generally. The PDDL can solve mission planning problems 

in various fields by describing them using a unified language system 

(Moon, 2021). However, it may be inefficient to use the PDDL for an 

actual mission because of the characteristics of the PDDL. When a 

mission’s difficulty is high, the PDDL is often satisfied with producing 

any mission plans that can be used to achieve the goal rather than 

producing an optimized mission result.

This paper proposes the adoption of an optimization process using a 

dynamic planning method to supplement the disadvantage of mission 

planning using the PDDL. Unlike the planning methods with the 

PDDL, the optimization techniques studied in the operation research 

(OR) field can effectively solve traveling salesman problems (TSP) 

and vehicle routing problems based on predetermined graph structures. 

The part that optimizes the traveling path in a complex autonomous 

system is separated and solved using a conventional dynamic 

programming method from the OR field. Then, based on the optimized 

path result produced, constraints are added to the PDDL to reduce the 

search region to be explored in the PDDL. The proposed method was 

evaluated by applying it to mission scenarios with various levels of 

difficulty, confirming that better and faster mission planning results 

can be produced compared to the conventional mission planning 

method.

2. Developed Mission Planner for AMVs

2.1 Mission Planner in Marine Environment

The mission planner structurally separates the roles of recognizing 

the surrounding environment and situation, setting mission objectives, 

and performing the mission, and simplifies the flow of data, thereby 

helping the system to operate successfully. The importance of 

developing a systematic mission planner increases with the complexity 

of the mission. Hence, we can find examples of using a mission 

planner in various studies that require actual system operation.

One study proposed a system architecture to build an autonomous 

system with multiple small vessels and perform mission planning in a 

marine environment (Elkins et al., 2010). It was designed to separate 

the decision-making required for performing a mission in the action 

engine into various levels and facilitate a broad spectrum of decisions 

from high levels such as collision avoidance to low levels such as the 

control input values of the actuator. An architectural system that could 

respond to various situations was designed using a high-level 

action-based method, and then used to make decisions and control, 

small ASVs. Nevertheless, this action-based decision-making system 

had the disadvantage of only being able to respond to situations that 

the developer could anticipate in advance.

The T-Rex mission planner was proposed to design a mission 

planning architecture using an AUV and output plans based on the 

time (McGann et al., 2007). Because it is difficult for an AUV to 

communicate smoothly, high autonomy is required when using an 

AUV to survey a marine environment. To deal with the high 

uncertainty in an underwater environment, a goal-oriented planning 

method was adopted, which allowed it to perform a mission without 

clearly defining specific actions. However, the algorithm lacks 

scalability. Thus, it had the drawback of being difficult to apply to 

large-scale problems.

Later, a mission planner that could be applied to multiple AUVs was 

developed, supplementing the T-Rex problem (Py et al., 2016). That 

study took into account a case where the autonomy systems were 

heterogeneous, thus considering the communication between an 

unmanned aerial vehicle and AUVs. An artificial intelligence-based 

mixed-initiative mission planner was introduced to perform the 

mission distribution and scheduling of multiple AMVs, and the overall 

mission planning was performed based on a centralized approach 

through communication between the AMVs.

A study was conducted on the construction of the ROSPlan mission 

planner to manipulate structures directly using AUVs (Palomeras et 

al., 2016). Unlike missions such as collecting environmental samples, 

missions that involve physically direct intervention require continuous 

planning because the increased uncertainty of changes based on the 

action. In this study, one AUV was used to perform the task of turning 

a valve. In this task environment, the shape or form of the surrounding 

structures could vary, and it had to be able to cope with the situation 

where the task was not completed within a set period. Therefore, 

scheduling was even more important. The plan included the estimated 

time of completing each task, and if a decision made at the high level 

was not performed at the low-level control, taking more time than 

planned, then it was regarded as a failure, and re-planning was 

performed so that the mission could continue.

The four studies introduced above represent mission planners that 
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can easily be applied to other studies by expanding their structures, 

which means that their use can be considered first. In the case of 

action-based mission planners, it is difficult to evaluate the efficiency 

of a mission plan because the action decisions vary depending on the 

developer’s capability. Mission planners that used the PDDL have 

been rated higher in relation to the plan’s specificity and mission 

delivery compared to other mission planners (Martinez et al., 2020). 

Furthermore, the existence of various PDDL variants is advantageous. 

Out of these, an appropriate one can be selected based on the situation 

of the problem to be solved. Therefore, the generalizability and 

adaptability are high.

2.2 Development of Efficient Planner

Path planning accounts for a large proportion of the mission 

planning for a mobile robot. If the mission that the vehicle has to 

perform after moving to the mission’s region is not complex, the entire 

mission planning problem may be replaced by a path planning 

problem. Path planning is usually divided into a task allocation 

problem that specifies the mission’s region to be visited by multiple 

robots and a scheduling problem that determines the sequential order 

for performing the allocated tasks. Many studies have been conducted 

to solve these two coupled problems in combination.

Temporal planning can be optimized using a genetic algorithm 

(Miloradović, et al., 2017). If heterogeneous autonomous systems are 

used, there is a high possibility that the constraints will have high 

non-linearity. Therefore, the process of finding the solution using a 

genetic algorithm may be efficient. Because the sensitivity to mutation 

is high and can easily diverge as a result of the characteristics of the 

problem in mission planning, the proposed algorithm considers this to 

maintain a certain number of entities that have no mutation among the 

entities that are evolving. In addition, it sometimes uses prior 

knowledge of the problem for mutations. Based on this, a solution 

close to the optimal solution can be quickly found.

In one attempt to find the optimal solution, the mission planning 

problem was defined as an OR-based problem (Tsiogkas and Lane, 

2018). A constraint was applied where each autonomous vehicle 

possessed limited resources, and an attempt was made to find a plan 

where as many tasks as possible could be performed while complying 

with the constraint on the operating time. Despite utilizing an 

orienteering problem for the problem definition, the re-planning and 

environment information were based on the mission planning 

algorithm’s goal.

Another study used the PDDL for mission planning after allocating 

tasks to increase the efficiency of the mission planning for multiple 

AUVs (Carreno et al., 2020). Even if the problem was only described 

using the PDDL, concurrency and heterogeneity could be achieved. 

Although the efficiency of the mission planning and success rate of the 

mission plan were low, task allocation that considered the 

heterogeneity, which was proposed in the paper, improved this 

significantly.

As the above previous studies have shown, the use of research in the 

OR field has the advantage of allowing the mission performances of 

multiple mobile robots to effectively be optimized, but it is difficult to 

specify and formulate the mission, such as defining actions at a high 

dimension, like the PDDL. Combining a conventionally used 

algorithm with high optimality and the PDDL, which can be used to 

formulate abstract missions, as in Carreno et al. (2020), has recently 

been studied by multiple researchers because these two independent 

research fields can complement each other (Muñoz et al., 2016; Silver 

et al., 2020; Kim et al., 2019).

3. Mission Planning Using PDDL

The PDDL is a language system developed to standardize mission 

planning algorithms. It was developed based on the Stanford research 

institute problem (STRIPS) and action description language (ADL), 

which are conventional mission planning languages. The PDDL by 

itself does not provide a mission planning function but makes it 

possible to apply the same mission planning algorithm to mission 

planning problems in various fields by defining them with a unified 

grammar. However, various versions of the PDDL and extended 

PDDLs have been developed based on the characteristics required in 

various mission planning problems.

3.1 PDDL Variations

PDDL 1.x, which is the most basic version of the PDDL, is driven 

by a logical modeling method and based solely on the true or false 

values of given propositions. We define each variable’s state value and 

the action model in advance. The action model can change the states of 

variables under the given condition, and only the basic logical 

operators (and/or) can be used in the given condition. The mission 

planning algorithm finds a sequence of actions to reach the target state 

from the initial state, where the basic goal is reaching it through a 

minimum number of actions. Depending on the version, it is also 

possible to define the cost for each action in advance and set a goal of 

minimizing the sum of the cost functions of the action sequence.

PDDL 2.1 significantly improved the expression capability of the 

mission planning language through the adoption of time and numeric 

variables, which could not previously be represented (Geffner, 2003). 

It adopts period parameters for modeling the time required for the 

tasks to produce a plan based on time, and uses three new points to 

apply the conditions of the operation start time, operation termination 

time, and operation duration. For variables that change as the result of 

an action, the effect can also be applied at the start and end of the 

action in a similar way. Numeric variables enable the expression of 

continuous resources such as batteries and materials, facilitating the 

planning of more realistic mission scenarios.

PDDL 3.0 allows the adoption of preferred constraints in mission 

plans. In other words, it was extended to allow the language to reflect 

a user’s preference, even if various actions are possible. In each 

version of the PDDL, every action changes the state variables 

deterministically. In the probabilistic PDDL or relational dynamic 
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influence diagram language (RDDL), however, the action model is 

defined probabilistically, which makes it possible to describe 

problems involving a partially observable Markov decision process 

(POMDP).

3.2 PDDL 2.1 Definition

PDDL 2.1 is a typically used for the mission planning algorithms of 

heterogeneous and multiple systems because it supports a function for 

planning the concurrent action commands of multiple agents. PDDL 

2.1 aims to minimize the time required for the mission plan and uses a 

tuple consisting of   .

 -   refers to the initial state and consists of a true/false logical 

variable and numeric variable ().

 -  refers to the possible action set, where each action is defined by 

the prerequisites, execution effects, and action’s duration.

( ⊢  ↔ ⊣ ⊢ ⊣ ) The prerequisites are 

divided into conditions that must be satisfied before, after, and 

while the action is being performed. For the execution effects, the 

variables that change before and after the action starts can be 

defined.

 -  is the goal state and refers to the variable condition that is to be 

finally reached.

 -  is the cost function to be optimized and is defined as the total 

time required to perform the mission.

 - The logical variable for each prerequisite and effect can use only 

the basic logical operators.

 - The following operators can be used by the numeric variable for 

each prerequisite and effect:

      ∈≤≥ c∈ (1)

       ∈×÷ (2)

When a mission planning problem is described as above through 

PDDL 2.1, the mission planning algorithm finds a series of action 

sequences to reach the goal state from the initial state. The algorithm 

tries to find a solution that minimizes the time required while 

accomplishing the mission as represented in eqn. (3), but when it is 

difficult to find the optimal solution because the problem’s complexity 

is large, it may aim to find only an adequately satisfactory solution.

argmin     a  n ∣ai∈A an ∘⋯∘a I G (3)

3.3 PDDL 2.1 Planner

To solve a problem described using PDDL 2.1, a mission planning 

algorithm that analyzes the problem type and searches for a solution 

must be used. The mission planning algorithms that can be used in 

marine environment mission planning are as follows. Continuous 

linear planner (COLIN) (Coles et al., 2012) is a heuristic-based 

mission planner that proceeds while examining the survey region in 

the forward direction, and it facilitates the inference of continuous 

linear changes. Here, heuristic refers to a decision-making method set 

based on experience and prior knowledge. The linear programming 

method and fast forward type-search algorithm have been combined in 

the COLIN algorithm’s practical implementation process. Forward- 

chaining partial-order planning (POPF) (Coles et al., 2021) was 

constructed based on the COLIN algorithm, and it uses the idea of 

proceeding with the mission plan by partially dividing each stage in 

the process of searching for the solution. It aims to find a solution that 

satisfies the given condition by finding the constraints that must be 

solved sequentially, rather than actions that are executed after certain 

conditions have already been satisfied. Optimizing preferences and 

time-dependent costs (OPTIC) (Benton et al., 2012) manages the 

interaction between the preferred time constraints and the mandatory 

time constraints occurring in the mission planning stage based on the 

integer programming method.

4. Methodology

4.1 Mission Scenario

Fig. 1 shows a complex system that includes an ASV and AUVs, 

which is currently being developed in a project involving the source 

technology for AMVs. This paper considers various scenarios to 

produce mission planning results. In this research and development, 

we used a complex system consisting of an ASV and three AUVs 

loaded on the ASV to carry out a mission that included a bathymetry 

survey and creation of a digital map at a depth of more than 2,000 m. A 

buoyancy-controlled AUV conducted a survey independently over a 

broad region and long period of time, while the bathymetry survey was 

conducted using two power-controlled AUVs. The ASV had the role 

of transporting and recharging the AUVs. The main actions of this 

complex autonomous system consisted of the ASV traveling to the 

survey point, the deployment and docking of the AUVs, and the 

bathymetry survey by the AUVs. The goal was to perform this mission 

autonomously over an operating distance of up to 1,000 km and a 

period of up to seven days. The mission planner for the complex 

system needed high reliability to perform the mission autonomously 

for a long period.

4.2 PDDL Description

The problem was described using the grammar of PDDL 2.1 based 

on the presented scenario. The PDDL consists of domain files that 

define the rules of a problem to be solved and problem files containing 

the environment setting information. The problem files are composed 

separately. Thus, it has the advantage of being able to easily solve a 

variety of problems in the same domain.

The state variables and action model were defined in the domain file 

according to the PDDL 2.1 grammar. The state variables included the 

complex system’s navigation information, environment information, 

battery status information, and fault diagnostic information. The 
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regions to be surveyed and waypoints were also set up. In the case of 

the exploration region survey by the AUVs, we assumed that there 

were pre-planned survey patterns that would make it possible to 

conduct the survey once the AUVs arrived at the survey region. The 

ASV has to transport the AUVs to the waypoints included in the 

survey region and then deploy them. Because there could be multiple 

waypoints in the survey region, as well as waypoints outside the 

survey region, the survey region and waypoint variables were set 

Fig. 1 Example of a mission using an unmanned surface vehicle and autonomous underwater vehicle in the marine environment 

(Courtesy of KRISO)

Table 1 Part of domain files and problem files following PDDL 2.1 format

Domain file Problem file

(:types AUV waypoint region)
(:predicates
    (located ?wp – waypoint)
    (AUVlocated ?wp – waypoint ?a – AUV)
    (surveyed ?r – region)
    (onUSV ?a – AUV)
...
(:functions
    (battery ?a – AUV)
    (consumption)
    (surveyspeed)
    (USVspeed)
...
(:durative-action move
    :parameters (?wpi ?wpf – waypoint)
    :duration (= ?duration (/ (distance ?wpi ?wpf) (USVspeed))
    :condition (and
        (at start (USVavailable))
        (at start (located ?wpi))
        (at start (movable ?wpi ?wpf))
    :effect (and
        (at start (not (located ?wpi)))
        (at start (not (USVavailable)))
        (at end (USVavailable))
        (at end (located ?wpf))
        (at end (increase (total-distance) (distance ?wpi ?wpf)))

(:init
    (= (distance wp1 wp2) 200)
    (= (distance wp1 wp3) 320)
    (= (regionSize r1) 60)
    (= (regionSize r2) 60)
    (movable wp1 wp2)
    (movable wp2 wp3)
    (USVavailable)
    (AUVavailable a1)
    (onUSV a1)
    (= (surveySpeed) 5)
    (located wp1)
...
(:goal (and
    (surveyed r1)
    (surveyed r2)
    (located wp1)
    (onUSV a1)
    (onUSV a2)
    (BCgone)



46 Junwoo Jang, Haggi Do and Jinwhan Kim

separately. The action model included the travel of the ASV, 

deployment and docking of the AUVs, exploration region survey by 

the AUVs, and recharging of the AUVs at the ASV.

move (?wpi, ?wpf): The ASV moves from Waypoint ?wpi to 

Waypoint ?wpf.

deploy (?a, ?wp): The ?a-th power-controlled AUV is deployed at 

Waypoint ?wp.

BC_deploy (?wp): The buoyancy-controlled AUV is deployed at 

Waypoint ?wp.

survey (?a, ?r, ?wp): The ?a-th power-controlled AUV surveys 

exploration region ?r, starting from Waypoint ?wp.

dock (?a, ?wp): The ?a -th power-controlled AUV is docked at 

Waypoint ?wp.

charge (?a): The ?a-th power-controlled AUV mounted on the ASV 

is recharged.

The problem file contained information about the initial state of the 

mission and goal state to be reached. The initial state information 

included the values of all the state variables used in the domain file, 

such as the traveling speed of the ASV, charging speed of the AUV, 

survey region’s size, and locations of waypoints. The goals were set to 

deploy the buoyancy-controlled AUV based on the scenario, complete 

the survey in all the designated regions, and return to the initial starting 

position with the power-controlled AUVs. Table 1 shows an example 

of domain files and problem files created.

4.3 Constrained PDDL Using TSP

The problem presented in the scenario could not simply be replaced by 

a traveling path planning problem because it included the functions for 

deploying, docking, and charging the AUVs. However, as the number of 

survey regions increased, the optimality of the planned mission was 

greatly affected by the ASV’s mission routes. Because the ASV had two 

AUVs that could perform surveys, the ASV could travel repeatedly to 

deploy and recover these AUVs at different areas, which allowed the 

mission to be carried out faster. However, because this required the 

AUVs to be fully charged for surveying, the ASV’s optimal travel path 

could be different from the optimal travel path produced when only the 

reduction of the traveling distance was considered. The optimal travel 

path that reduced the traveling distance could be used because it 

significantly reduced the cost function result for traveling.

When waypoints were given in the problem, the solution that 

minimized the traveling distance was found through the OR tool that 

solved the TSP. In the case of TSP optimization, even if more than 100 

waypoints were given, there was no significant increase in the 

computation time for the entire mission plan because the optimization 

could be performed in less than 1 s. Afterward, a movable variable was 

added to the problem file so that the ASV could move along the 

optimal path found. In this case, the number of possible cases of the 

move action that the ASV could take at the waypoint where the ASV 

was located was reduced from (Total Number of Waypoints – 1) to 1, 

which meant the survey regions could be reduced significantly.

Because the optimal path of the ASV found by the TSP was different 

from the optimal path of the problem that was to be solved originally, 

moveable paths could be added to compensate for this. In this paper, 

we add the condition that it is possible to move to a nearby waypoint in 

the optimal path sequence produced in the TSP with heuristics. Fig. 2 

shows the moveable paths added according to the neighboring range 

when it is possible to move to the neighboring waypoints in the 

optimal path sequence.

5. Experiments and Results

The mission planning algorithm was executed in various 

environments to evaluate the proposed algorithm’s performance. 

Based on the given mission scenario, the complex system had to 

deploy the buoyancy-controlled AUV and use two power-controlled 

AUVs to survey underwater regions within a range of 1,000 km. The 

survey regions were randomly generated within the range, and the 

number of survey regions was changed to examine the mission 

performance in relation to the difficulty level of the problem. Because 

each mission planner generated the same mission planning result for 

the same problem setting, ten problems were created for each number 

of survey regions, and each algorithm was used to solve these 

problems. The mission planning algorithms had a time constraint of 1 

min, and the best result produced within this time was used.

(a) Optimal path produced by TSP (b) Add 1-neighboring node (b) Add 2-neighboring node

Fig. 2 Optimal path obtained from solving the traveling salesman problem and additional movable paths.
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5.1 Discussion on Planned Result

To examine the characteristics of the mission planning results using 

the PDDL before comparing the performances of the different 

algorithms, Table 2 summarizes the mission planning results of the 

algorithms for a relatively simple problem where there were two 

survey regions. As shown in the table, the total mission duration varied 

depending on the mission planning algorithm used. The convergence 

to the same optimal solution was found in the POPF and OPTIC 

algorithms, but the solution did not converge within 1 min in the 

COLIN algorithm. In the case of COLIN, the convergence to the 

optimal solution was confirmed when 2 min were given for the 

computation time.

In the mission planning results produced by POPF and OPTIC, it 

was found that the ASV moved to Waypoint 3 at 19.152, and at the 

same time, AUV1 surveyed the r0 region. Thus, PDDL 2.1 could plan 

multiple, heterogeneous missions simultaneously because each action 

was performed based on time. Furthermore, to minimize the final 

mission duration, the AUV may not be recovered immediately after 

completing the survey in a region; rather, it could be recovered later 

after completing another mission and returning. If it would be a 

problem in a real-world operation to let the AUV remain underwater 

for a long time without recovering it, this could be solved by adding 

constraints. In the light of these results, the mission planner could be 

effective in solving complex problems, but it is necessary to verify the 

results in various scenarios before using them in real operations and 

check whether the user approves them for each situation.

5.2 Mission Planning Success Rate

The difficulty of the problem tended to increase with the number of 

survey regions. Consequently, there were cases where an action 

sequence that could reach the goal state from the initial state within a 

limited time of 1 min could not be found. The mission success rate was 

examined based on the randomly generated number of survey regions 

in the mission scenarios, and Fig. 3 shows the results.

If constraints were added to the PDDL problem using the TSP in 

advance, the number of usable action cases decreased, but at the same 

time, the width of the action for reaching the target became narrower. 

Therefore, the success rate of the mission planning results did not 

increase unconditionally. Nevertheless, it was found that the mission 

success rate was generally higher or similar when constraints were 

COLIN POPF OPTIC

0.000: (move wp0 wp2) [18.150]
18.151: (deploy a1 wp2) [1.000]
19.152: (survey a1 r0 wp2) [20.000]
19.153: (move wp2 wp3) [32.350]
51.504: (deploy a2 wp3) [1.000]
52.505: (survey a2 r1 wp3) [20.000]
72.506: (dock a2 wp3) [1.000]
73.507: (move wp3 wp2) [32.350]
86.860: (charge a2) [20.000]
105.858: (dock a1 wp2) [1.000]
106.859: (charge a1) [20.000]
106.861: (move wp2 wp1) [22.400]
129.262: (bc_deploy wp1) [1.000]
130.263: (move wp1 wp0) [32.800]

0.000: (move wp0 wp2) [18.150]
18.151: (deploy a1 wp2) [1.000]
19.152: (move wp2 wp3) [32.350]
19.152: (survey a1 r0 wp2) [20.000]
51.503: (deploy a2 wp3) [1.000]
52.504: (survey a2 r1 wp3) [20.000]
72.505: (dock a2 wp3) [1.000]
73.506: (move wp3 wp1) [45.300]
118.807: (bc_deploy wp1) [1.000]
119.808: (move wp1 wp2) [22.400]
142.209: (dock a1 wp2) [1.000]
143.210: (move wp2 wp0) [18.150]

0.000: (move wp0 wp2) [18.150]
18.151: (deploy a1 wp2) [1.000]
19.152: (move wp2 wp3) [32.350]
19.152: (survey a1 r0 wp2) [20.000]
51.503: (deploy a2 wp3) [1.000]
52.504: (survey a2 r1 wp3) [20.000]
72.505: (dock a2 wp3) [1.000]
73.506: (move wp3 wp1) [45.300]
118.807: (bc_deploy wp1) [1.000]
119.808: (move wp1 wp2) [22.400]
142.209: (dock a1 wp2) [1.000]
143.210: (move wp2 wp0) [18.150]

(a) COLIN (b) POPF (b) OPTIC

Fig. 3 Number of mission successes according to the mission planner. OPTIC algorithm can find all solutions up to 9 survey regions.

TSP-0 means that the movable path is set as the optimal path from the TSP result. TSP-1 and TSP-2 are cases where moving

to 1 and 2 neighboring nodes is possible, respectively.

Table 2 Results of planning witth PDDL 2.1 according to the planners. Each action sequence is represented as <start time: (action) 

[action duration]>.
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added. The mission success rate declined, starting from when the 

number of survey regions was four in the case of the COLIN and POPF 

algorithms. A high success rate was obtained when neighboring 

waypoints were not used in the case of COLIN and when a 

neighboring waypoint was used in the case of POPF. In the case of 

OPTIC, the success rate started to decrease after 16 survey regions 

because the stability was higher in a successful mission plan with this 

algorithm compared to the other two algorithms. When constraints 

were added in the PDDL, the mission sometimes failed in the past, but 

when the scale of the problem increased, the success rate was high. It 

was also confirmed that the number of successes was maintained at 

nine or higher for up to 24 survey regions in the case of TSP-0.

5.3 Mission Planning Performance

Using box-and-whisker plots, Fig. 4 shows the total mission 

durations of the mission planning results of the OPTIC mission 

planning algorithm. In the case of the COLIN and POPF algorithms, 

the mission success rate dropped drastically as the number of survey 

regions increased. Furthermore, because the pattern in the case of a 

small number of survey regions also did not show much difference 

from that of OPTIC, we only show the results of OPTIC.

When the number of survey regions was small, the scale of the 

problem was small, and the algorithm’s optimization could be 

performed within a given limited time of 1 min. In this case, the 

performance of TSP-0, which had constraints on the waypoints where 

the AUV could move, was not good compared to other cases, but the 

performance difference was not very large. On the other hand, when 

the number of survey regions was large, the scale of the problem 

increased, making it difficult to get sufficiently close to the optimal 

solution within the limited time. In addition, because the TSP 

constraints provided heuristics close to the optimal solution, a good 

solution could be found more quickly. In TSP-1, the performance 

tended to decrease, and in TSP-2, although there was volatility, the 

performance was generally similar. Nevertheless, the performance did 

not degrade entirely because both cases resulted in a higher mission 

success rate when the number of missions increased further to 16 or 

more. In sum, for the constraint used in finding an optimal solution, the 

effects of the constraint on the solution had a complex trade-off 

relationship, because the solution approached the optimal solution 

based on the strength of the constraint. Therefore, we can say that in 

this scenario, TSP-0 and TSP-2 provided more significant heuristics, 

improving the mission planning algorithm’s performance.

6. Conclusions

Complex autonomous systems open up the possibility of performing 

high-difficulty missions over a long period, which could not be 

performed previously, through the collaboration of various systems. 

Complex autonomous systems constructed for use in a marine 

environment where communication is highly restricted and uncertainty 

is high should have highly reliable autonomy. To this end, it is 

necessary to analyze and act at a high level in terms of determining 

situations and making decisions. PDDL-based mission planning has 

the drawback that it is difficult to optimize a complex problem with a 

large task size because of the mission planning characteristics. 

However, such algorithms are commonly used in mission planners 

because they make it possible to proceed with a mission plan at the 

action level, and the generalizability and adaptability of mission 

expression are high. At the same time, when using complex 

autonomous systems, path planning accounts for a large portion of the 

total mission plan, and this problem can be solved more efficiently 

using an OR-based dynamic programming method. In this paper, we 

improved the performance of mission planning by applying OR-based 

path planning results to PDDL-based mission planning problems. The 

proposed method improved the success rate of the mission plan and the 

optimality of the mission planning result, thus showing that mission 

planning with higher reliability is possible.

(b) Small number of survey regions (b) Large number of survey regions

Fig. 4 Makespan according to the number of survey regions. As the mission planner minimizes makespan. Only the case of 10 survey

regions in TSP-2 uses 9 samples, and 10 samples are used for others.
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